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About the Book

If data is the new oil, then machine learning is the drill. As companies gain
access to ever-increasing quantities of raw data, the ability to deliver state-
of-the-art predictive models that support business decision-making becomes
more and more valuable.

In this book, you'll work on an end-to-end project based around a realistic
data set and split up into bite-sized practical exercises. This creates a case-
study approach that simulates the working conditions you'll experience in
real-world data science projects.

You'll learn how to use key Python packages, including pandas, Matplotlib,
and scikit-learn, and master the process of data exploration and data
processing, before moving on to fitting, evaluating, and tuning algorithms
such as regularized logistic regression and random forest.

Now in its second edition, this book will take you through the end-to-end
process of exploring data and delivering machine learning models. Updated
for 2021, this edition includes brand new content on XGBoost, SHAP
values, algorithmic fairness, and the ethical concerns of deploying a model
in the real world.

By the end of this data science book, you'll have the skills, understanding,
and confidence to build your own machine learning models and gain
insights from real data.
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About the Author

Stephen Klosterman is a Machine Learning Data Scientist with a
background in math, environmental science, and ecology. His education
includes a Ph.D. in Biology from Harvard University, where he was an
assistant teacher of the Data Science course. His professional experience
includes work in the environmental, health care, and financial sectors. At
work, he likes to research and develop machine learning solutions that
create value, and that stakeholders understand. In his spare time, he enjoys
running, biking, paddleboarding, and music.

OceanofPDF.com

https://oceanofpdf.com/


Objectives

Load, explore, and process data using the pandas Python package

Use Matplotlib to create effective data visualizations

Implement predictive machine learning models with scikit-learn and
XGBoost

Use lasso and ridge regression to reduce model overfitting

Build ensemble models of decision trees, using random forest and
gradient boosting

Evaluate model performance and interpret model predictions

Deliver valuable insights by making clear business recommendations
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Audience

Data Science Projects with Python – Second Edition is for anyone who
wants to get started with data science and machine learning. If you're keen
to advance your career by using data analysis and predictive modeling to
generate business insights, then this book is the perfect place to begin. To
quickly grasp the concepts covered, it is recommended that you have basic
experience with programming in Python or another similar language (R,
Matlab, C, etc). Additionally, knowledge of statistics that would be covered
in a basic course, including topics such as probability and linear regression,
or a willingness to learn about these on your own while reading this book
would be useful.
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Approach

Data Science Projects with Python takes a practical case study approach to
learning, teaching concepts in the context of a real-world dataset. Clear
explanations will deepen your knowledge, while engaging exercises and
challenging activities will reinforce it with hands-on practice.
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About the Chapters

Chapter 1, Data Exploration and Cleaning, gets you started with Python
and Jupyter notebooks. The chapter then explores the case study dataset and
delves into exploratory data analysis, quality assurance, and data cleaning
using pandas.

Chapter 2, Introduction to Scikit-Learn and Model Evaluation, introduces
you to the evaluation metrics for binary classification models. You'll learn
how to build and evaluate binary classification models using scikit-learn.

Chapter 3, Details of Logistic Regression and Feature Exploration, dives
deep into logistic regression and feature exploration. You'll learn how to
generate correlation plots of many features and a response variable and
interpret logistic regression as a linear model.

Chapter 4, The Bias-Variance Trade-Off, explores the foundational machine
learning concepts of overfitting, underfitting, and the bias-variance trade-off
by examining how the logistic regression model can be extended to address
the overfitting problem.

Chapter 5, Decision Trees and Random Forests, introduces you to tree-
based machine learning models. You'll learn how to train decision trees for
machine learning purposes, visualize trained decision trees, and train
random forests and visualize the results.

Chapter 6, Gradient Boosting, XGBoost, and SHAP Values, introduces you
to two key concepts: gradient boosting and shapley additive explanations
(SHAP). You'll learn to train XGBoost models and understand how SHAP
values can be used to provide individualized explanations for model
predictions from any dataset.

Chapter 7, Test Set Analysis, Financial Insights, and Delivery to the Client,
presents several techniques for analyzing a model test set for deriving
insights into likely model performance in the future. The chapter also



describes key elements to consider when delivering and deploying a model,
such as the format of delivery and ways to monitor the model as it is being
used.

OceanofPDF.com

https://oceanofpdf.com/


Hardware Requirements

For the optimal student experience, we recommend the following
hardware configuration:

Processor: Intel Core i5 or equivalent

Memory: 4 GB RAM

Storage: 35 GB available space
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Software Requirements

You'll also need the following software installed in advance:

OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit,
Ubuntu Linux, or the latest version of OS X

Browser: Google Chrome/Mozilla Firefox Latest Version

Notepad++/Sublime Text as IDE (this is optional, as you can practice
everything using the Jupyter Notebook on your browser)

Python 3.8+ (This book uses Python 3.8.2) installed (from
https://python.org, or via Anaconda as recommended below) . At the
time of writing, the SHAP library used in Chapter 6, Gradient
Boosting, XGBoost, and SHAP Values, is not compatible with Python
3.9. Hence, if you are using Python 3.9 as your base environment, we
suggest that you set up a Python 3.8 environment as described in the
next section.

Python libraries as needed (Jupyter, NumPy, Pandas, Matplotlib, and
so on, installed via Anaconda as recommended below)
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Installation and Setup

Before you start this book, it is recommended to install the Anaconda
package manager and use it to coordinate installation of Python and its
packages.

Code Bundle

Please find the code bundle for this book, hosted on GitHub at
https://github.com/PacktPublishing/Data-Science-Projects-with-Python-
Second-Ed.

Anaconda and Setting up Your Environment

You can install Anaconda by visiting the following link:
https://www.anaconda.com/products/individual. Scroll down to the bottom
of the page and download the installer relevant to your system.

It is recommended to create an environment in Anaconda to do the
exercises and activities in this book, which have been tested against the
software versions indicated here. Once you have Anaconda installed, open a
Terminal, if you're using macOS or Linux, or a Command Prompt window
in Windows, and do the following:

1. Create an environment with most required packages. You can call it
whatever you want; here it's called dspwp2. Copy and paste, or type
the entire statement here on one line in the terminal:

conda create -n dspwp2 python=3.8.2
jupyter=1.0.0 pandas=1.2.1 scikit-
learn=0.23.2 numpy=1.19.2 matplotlib=3.3.2
seaborn=0.11.1 python-graphviz=0.15
xlrd=2.0.1

2. Type 'y' and press [Enter] when prompted.

clbr://internal.invalid/book/text/part0001_split_009.html
clbr://internal.invalid/book/text/part0001_split_009.html


3. Activate the environment:

conda activate dspwp2

4. Install the remaining packages:

conda install -c conda-forge xgboost=1.3.0
shap=0.37.0

5. Type 'y' and [Enter] when prompted.

6. You are ready to use the environment. To deactivate it when finished:

conda deactivate

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!
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Conventions

Code words in the text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are
shown as follows: "By typing conda list at the command line, you can
see all the packages installed in your environment."

A block of code is set as follows:

import numpy as np #numerical computation

import pandas as pd #data wrangling

import matplotlib.pyplot as plt #plotting package

#Next line helps with rendering plots

%matplotlib inline

import matplotlib as mpl #add'l plotting
functionality

mpl.rcParams['figure.dpi'] = 400 #high res
figures

import graphviz #to visualize decision trees

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like
this: "Create a new Python 3 notebook from the New menu as shown."
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Code Presentation

Lines of code that span multiple lines are split using a backslash ( \ ). When
the code is executed, Python will ignore the backslash, and treat the code on
the next line as a direct continuation of the current line.

For example:

my_new_lr = LogisticRegression(penalty='l2',
dual=False,\

                               tol=0.0001,
C=1.0,\

                               fit_intercept=True
,\

                               intercept_scaling=
1,\

                               class_weight=None,
\

                               random_state=None,
\

                               solver='lbfgs',\

                               max_iter=100,\

                               multi_class='auto'
,\

                               verbose=0,
warm_start=False,\

                               n_jobs=None,
l1_ratio=None)



Comments are added into code to help explain specific bits of logic. Single-
line comments are denoted using the # symbol, as follows:

import pandas as pd

import matplotlib.pyplot as plt #import plotting
package

#render plotting automatically

%matplotlib inline
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Get in Touch

Feedback from our readers is always welcome.

General feedback: If you have any questions about this book, please
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you could report this to us. Please visit
www.packtpub.com/support/errata and complete the form.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you could provide us with the location
address or website name. Please contact us at copyright@packt.com
with a link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in, and you are interested in either writing or contributing to
a book, please visit authors.packtpub.com.
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Please Leave a Review

Let us know what you think by leaving a detailed, impartial review on
Amazon. We appreciate all feedback – it helps us continue to make great
products and help aspiring developers build their skills. Please spare a few
minutes to give your thoughts – it makes a big difference to us. You can
leave a review by clicking the following link:
https://packt.link/r/1800564481.
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1. Data Exploration and Cleaning

Overview

In this chapter, you will take your first steps with Python and Jupyter
notebooks, some of the most common tools data scientists use. You'll then
take the first look at the dataset for the case study project that will form the
core of this book. You will begin to develop an intuition for quality
assurance checks that data needs to be put through before model building.
By the end of the chapter, you will be able to use pandas, the top package
for wrangling tabular data in Python, to do exploratory data analysis,
quality assurance, and data cleaning.
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Introduction

Most businesses possess a wealth of data on their operations and customers.
Reporting on this data in the form of descriptive charts, graphs, and tables is
a good way to understand the current state of the business. However, in
order to provide quantitative guidance on future business strategies and
operations, it is necessary to go a step further. This is where the practices of
machine learning and predictive modeling are needed. In this book, we will
show how to go from descriptive analyses to concrete guidance for future
operations, using predictive models.

To accomplish this goal, we'll introduce some of the most widely used
machine learning tools via Python and many of its packages. You will also
get a sense of the practical skills necessary to execute successful projects:
inquisitiveness when examining data and communication with the client.
Time spent looking in detail at a dataset and critically examining whether it
accurately meets its intended purpose is time well spent. You will learn
several techniques for assessing data quality here.

In this chapter, after getting familiar with the basic tools for data
exploration, we will discuss a few typical working scenarios for how you
may receive data. Then, we will begin a thorough exploration of the case
study dataset and help you learn how you can uncover possible issues, so
that when you are ready for modeling, you may proceed with confidence.
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Python and the Anaconda Package Management System

In this book, we will use the Python programming language. Python is a top
language for data science and is one of the fastest-growing programming
languages. A commonly cited reason for Python's popularity is that it is
easy to learn. If you have Python experience, that's great; however, if you
have experience with other languages, such as C, Matlab, or R, you
shouldn't have much trouble using Python. You should be familiar with the
general constructs of computer programming to get the most out of this
book. Examples of such constructs are for loops and if statements that
guide the control flow of a program. No matter what language you have
used, you are likely familiar with these constructs, which you will also find
in Python.

A key feature of Python that is different from some other languages is that it
is zero-indexed; in other words, the first element of an ordered collection
has an index of 0. Python also supports negative indexing, where the index
-1 refers to the last element of an ordered collection and negative indices
count backward from the end. The slice operator, :, can be used to select
multiple elements of an ordered collection from within a range, starting
from the beginning, or going to the end of the collection.
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Indexing and the Slice Operator

Here, we demonstrate how indexing and the slice operator work. To have
something to index, we will create a list, which is a mutable ordered
collection that can contain any type of data, including numerical and string
types. "Mutable" just means the elements of the list can be changed after
they are first assigned. To create the numbers for our list, which will be
consecutive integers, we'll use the built-in range() Python function. The
range() function technically creates an iterator that we'll convert to a list
using the list() function, although you need not be concerned with that
detail here. The following screenshot shows a list of the first five positive
integers being printed on the console, as well as a few indexing operations,
and changing the first item of the list to a new value of a different data type:

Figure 1.1: List creation and indexing

A few things to notice about Figure 1.1: the endpoint of an interval is open
for both slice indexing and the range() function, while the starting point
is closed. In other words, notice how when we specify the start and end of
range(), endpoint 6 is not included in the result but starting point 1 is.



Similarly, when indexing the list with the slice [:3], this includes all
elements of the list with indices up to, but not including, 3.

We've referred to ordered collections, but Python also includes unordered
collections. An important one of these is called a dictionary. A dictionary is
an unordered collection of key:value pairs. Instead of looking up the values
of a dictionary by integer indices, you look them up by keys, which could be
numbers or strings. A dictionary can be created using curly braces {} and
with the key:value pairs separated by commas. The following screenshot is
an example of how we can create a dictionary with counts of fruit – examine
the number of apples, then add a new type of fruit and its count:

Figure 1.2: An example dictionary

There are many other distinctive features of Python and we just want to give
you a flavor here, without getting into too much detail. In fact, you will
probably use packages such as pandas (pandas) and NumPy (numpy) for
most of your data handling in Python. NumPy provides fast numerical
computation on arrays and matrices, while pandas provides a wealth of data
wrangling and exploration capabilities on tables of data called DataFrames.
However, it's good to be familiar with some of the basics of Python—the
language that sits at the foundation of all of this. For example, indexing
works the same in NumPy and pandas as it does in Python.

One of the strengths of Python is that it is open source and has an active
community of developers creating amazing tools. We will use several of
these tools in this book. A potential pitfall of having open source packages
from different contributors is the dependencies between various packages.
For example, if you want to install pandas, it may rely on a certain version of
NumPy, which you may or may not have installed. Package management



systems make life easier in this respect. When you install a new package
through the package management system, it will ensure that all the
dependencies are met. If they aren't, you will be prompted to upgrade or
install new packages as necessary.

For this book, we will use the Anaconda package management system,
which you should already have installed. While we will only use Python
here, it is also possible to run R with Anaconda.

Note: Environments

It is recommended to create a new Python 3.x environment for this book.
Environments are like separate installations of Python, where the set of
packages you have installed can be different, as well as the version of
Python. Environments are useful for developing projects that need to be
deployed in different versions of Python, possibly with different
dependencies. For general information on this, see
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-
environments.html. See the Preface for specific instructions on setting up an
Anaconda environment for this book before you begin the upcoming
exercises.
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Exercise 1.01: Examining Anaconda and Getting Familiar with
Python

In this exercise, you will examine the packages in your Anaconda installation and
practice with some basic Python control flow and data structures, including a for
loop, dict, and list. This will confirm that you have completed the
installation steps in the preface and show you how Python syntax and data
structures may be a little different from other programming languages you may be
familiar with. Perform the following steps to complete the exercise:

Note

Before executing the exercises and the activity in this chapter, please make sure
you have followed the instructions regarding setting up your Python environment
as mentioned in the Preface. The code file for this exercise can be found here:
https://packt.link/N0RPT.

1. Open up Terminal, if you're using macOS or Linux, or a Command Prompt
window in Windows. If you're using an environment, activate it using
conda activate <name_of_your_environment>. Then type
conda list at the command line. You should observe an output similar to
the following:

https://packt.link/N0RPT


Figure 1.3: Selection of packages from conda list

You can see all the packages installed in your environment, including the
packages we will directly interact with, as well as their dependencies which
are needed for them to function. Managing dependencies among packages is
one of the main advantages of a package management system.

Note

For more information about Anaconda and command-line interaction, check
out this "cheat sheet":
https://docs.conda.io/projects/conda/en/latest/_downloads/843d9e0198f2a19
3a3484886fa28163c/conda-cheatsheet.pdf.

2. Type python in Terminal to open a command-line Python interpreter.
You should obtain an output similar to the following:

Figure 1.4: Command-line Python

You should see some information about your version of Python, as well as
the Python Command Prompt (>>>). When you type after this prompt, you
are writing Python code.

Note

Although we will be using the Jupyter notebook in this book, one of the aims
of this exercise is to go through the basic steps of writing and running
Python programs on the Command Prompt.

3. Write a for loop at the Command Prompt to print values from 0 to 4 using
the following code (note that the three dots at the beginning of the second
and third lines appear automatically if you are writing code in the command-
line Python interpreter; if you're instead writing in a Jupyter notebook, these
won't appear):

https://docs.conda.io/projects/conda/en/latest/_downloads/843d9e0198f2a193a3484886fa28163c/conda-cheatsheet.pdf


for counter in range(5):

...    print(counter)

...

Once you hit Enter when you see ... on the prompt, you should obtain
this output:

Figure 1.5: Output of a for loop at the command line

Notice that in Python, the opening of the for loop is followed by a colon,
and the body of the loop requires indentation. It's typical to use four
spaces to indent a code block. Here, the for loop prints the values returned
by the range() iterator, having repeatedly accessed them using the
counter variable with the in keyword.

Note

For many more details on Python code conventions, refer to the following:
https://www.python.org/dev/peps/pep-0008/.

Now, we will return to our dictionary example. The first step here is to create
the dictionary.

4. Create a dictionary of fruits (apples, oranges, and bananas) using the
following code:

example_dict = {'apples':5, 'oranges':8,
'bananas':13}

https://www.python.org/dev/peps/pep-0008/


5. Convert the dictionary to a list using the list() function, as shown in the
following snippet:

dict_to_list = list(example_dict)

dict_to_list

Once you run the preceding code, you should obtain the following output:

['apples', 'oranges', 'bananas']

Notice that when this is done and we examine the contents, only the keys of
the dictionary have been captured in the list. If we wanted the values, we
would have had to specify that with the .values() method of the list.
Also, notice that the list of dictionary keys happens to be in the same order
that we wrote them when creating the dictionary. This is not guaranteed,
however, as dictionaries are unordered collection types.

One convenient thing you can do with lists is to append other lists to them
with the + operator. As an example, in the next step, we will combine the
existing list of fruit with a list that contains just one more type of fruit,
overwriting the variable containing the original list, like this:
list(example_dict.values()); the interested readers can confirm
this for themselves.

6. Use the + operator to combine the existing list of fruits with a new list
containing only one fruit (pears):

dict_to_list = dict_to_list + ['pears']

dict_to_list

Your output will be as follows:

['apples', 'oranges', 'bananas', 'pears']

What if we wanted to sort our list of fruit types?

Python provides a built-in sorted() function that can be used for this; it
will return a sorted version of the input. In our case, this means the list of
fruit types will be sorted alphabetically.



7. Sort the list of fruits in alphabetical order using the sorted() function, as
shown in the following snippet:

sorted(dict_to_list)

Once you run the preceding code, you should see the following output:

['apples', 'bananas', 'oranges', 'pears']

That's enough Python for now. We will show you how to execute the code for this
book, so your Python knowledge should improve along the way. While you have
the Python interpreter open, you may wish to run the code examples shown in
Figures 1.1 and 1.2. When you're done with the interpreter, you can type quit()
to exit.

Note

As you learn more and inevitably want to try new things, consult the official
Python documentation: https://docs.python.org/3/.
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Different Types of Data Science Problems

Much of your time as a data scientist is likely to be spent wrangling data:
figuring out how to get it, getting it, examining it, making sure it's correct
and complete, and joining it with other types of data. pandas is a widely used
tool for data analysis in Python, and it can facilitate the data exploration
process for you, as we will see in this chapter. However, one of the key goals
of this book is to start you on your journey to becoming a machine learning
data scientist, for which you will need to master the art and science of
predictive modeling. This means using a mathematical model, or idealized
mathematical formulation, to learn relationships within the data, in the hope
of making accurate and useful predictions when new data comes in.

For predictive modeling use cases, data is typically organized in a tabular
structure, with features and a response variable. For example, if you want
to predict the price of a house based on some characteristics about it, such as
area and number of bedrooms, these attributes would be considered the
features and the price of the house would be the response variable. The
response variable is sometimes called the target variable or dependent
variable, while the features may also be called the independent variables.

If you have a dataset of 1,000 houses including the values of these features
and the prices of the houses, you can say you have 1,000 samples of labeled
data, where the labels are the known values of the response variable: the
prices of different houses. Most commonly, the tabular data structure is
organized so that different rows are different samples, while features and the
response occupy different columns, along with other metadata such as
sample IDs, as shown in Figure 1.6:



Figure 1.6: Labeled data (the house prices are the known target
variable)

Regression Problem

Once you have trained a model to learn the relationship between the features
and response using your labeled data, you can then use it to make predictions
for houses where you don't know the price, based on the information
contained in the features. The goal of predictive modeling in this case is to
be able to make a prediction that is close to the true value of the house. Since
we are predicting a numerical value on a continuous scale, this is called a
regression problem.

Classification Problem

On the other hand, if we were trying to make a qualitative prediction about
the house, to answer a yes or no question such as "will this house go on sale
within the next 5 years?" or "will the owner default on the mortgage?", we
would be solving what is known as a classification problem. Here, we
would hope to answer the yes or no question correctly. The following figure
is a schematic illustrating how model training works, and what the outcomes
of regression or classification models might be:



Figure 1.7: Schematic of model training and prediction for regression
and classification

Classification and regression tasks are called supervised learning, which is
a class of problems that relies on labeled data. These problems can be
thought of as needing "supervision" by the known values of the target
variable. By contrast, there is also unsupervised learning, which relates to
more open-ended questions of trying to find some sort of structure in a
dataset that does not necessarily have labels. Taking a broader view, any
kind of applied math problem, including fields as varied as optimization,
statistical inference, and time series modeling, may potentially be
considered an appropriate responsibility for a data scientist.
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Loading the Case Study Data with Jupyter and pandas

Now it's time to take a first look at the data we will use in our case study. We
won't do anything in this section other than ensure that we can load the data
into a Jupyter notebook correctly. Examining the data, and understanding
the problem you will solve with it, will come later.

The data file is an Excel spreadsheet called
default_of_credit_card_clients__courseware_version_
1_21_19.xls. We recommend you first open the spreadsheet in Excel or
the spreadsheet program of your choice. Note the number of rows and
columns. Look at some example values. This will help you know whether or
not you have loaded it correctly in the Jupyter notebook.

Note

The dataset can be obtained from the following link:
https://packt.link/wensZ. This is a modified version of the original dataset,
which has been sourced from the UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School
of Information and Computer Science.

What is a Jupyter notebook?

Jupyter notebooks are interactive coding environments that allow for inline
text and graphics. They are great tools for data scientists to communicate
and preserve their results, since both the methods (code) and the message
(text and graphics) are integrated. You can think of the environment as a
kind of web page where you can write and execute code. Jupyter notebooks
can, in fact, be rendered as web pages, as is done on GitHub. Here is an
example notebook: https://packt.link/pREet. Look it over and get a sense of
what you can do. An excerpt from this notebook is displayed here, showing
code, graphics, and prose, which is known as Markdown in this context:

https://packt.link/wensZ
http://archive.ics.uci.edu/ml
https://packt.link/pREet


Figure 1.8: Example of a Jupyter notebook showing code, graphics, and
Markdown text

One of the first things to learn about Jupyter notebooks is how to navigate
around and make edits. There are two modes available to you. If you select a
cell and press Enter, you are in edit mode and you can edit the text in that
cell. If you press Esc, you are in command mode and you can navigate
around the notebook.

Note

If you're reading the print version of this book, you can download and
browse the color versions of some of the images in this chapter by visiting
the following link: https://packt.link/T5EIH.

When you are in command mode, there are many useful hotkeys you can
use. The Up and Down arrows will help you select different cells and scroll

https://packt.link/T5EIH


through the notebook. If you press y on a selected cell in command mode, it
changes it to a code cell, in which the text is interpreted as code. Pressing m
changes it to a Markdown cell, where you can write formatted text. Shift +
Enter evaluates the cell, rendering the Markdown or executing the code, as
the case may be. You'll get some practice with a Jupyter notebook in the next
exercise.

Our first task in our first Jupyter notebook will be to load the case study
data. To do this, we will use a tool called pandas. It is probably not a stretch
to say that pandas is the pre-eminent data-wrangling tool in Python.

A DataFrame is a foundational class in pandas. We'll talk more about what a
class is later, but you can think of it as a template for a data structure, where
a data structure is something like the lists or dictionaries we discussed
earlier. However, a DataFrame is much richer in functionality than either of
these. A DataFrame is similar to spreadsheets in many ways. There are rows,
which are labeled by a row index, and columns, which are usually given
column header-like labels that can be thought of as a column index. Index
is, in fact, a data type in pandas used to store indices for a DataFrame, and
columns have their own data type called Series.

You can do a lot of the same things with a DataFrame that you can do with
Excel sheets, such as creating pivot tables and filtering rows. pandas also
includes SQL-like functionality. You can join different DataFrames together,
for example. Another advantage of DataFrames is that once your data is
contained in one of them, you have the capabilities of a wealth of pandas
functionality at your fingertips, for data analysis. The following figure is an
example of a pandas DataFrame:



Figure 1.9: Example of a pandas DataFrame with an integer row index
at the left and a column index of strings

The example in Figure 1.9 is in fact the data for the case study. As the first
step with Jupyter and pandas, we will now see how to create a Jupyter
notebook and load data with pandas. There are several convenient functions
you can use in pandas to explore your data, including .head() to see the
first few rows of the DataFrame, .info() to see all columns with
datatypes, .columns to return a list of column names as strings, and others
we will learn about in the following exercises.
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Exercise 1.02: Loading the Case Study Data in a Jupyter
Notebook

Now that you've learned about Jupyter notebooks, the environment in which we'll
write code, and pandas, the data wrangling package, let's create our first Jupyter
notebook. We'll use pandas within this notebook to load the case study data and
briefly examine it. Perform the following steps to complete the exercise:

Note

The Jupyter notebook for this exercise can be found at https://packt.link/GHPSn.

1. Open a Terminal (macOS or Linux) or a Command Prompt window
(Windows) and type jupyter notebook (first activating your Anaconda
environment if you're using one).

You will be presented with the Jupyter interface in your web browser. If the
browser does not open automatically, copy and paste the URL from the
Terminal into your browser. In this interface, you can navigate around your
directories starting from the directory you were in when you launched the
notebook server.

2. Navigate to a convenient location where you will store the materials for this
book, and create a new Python 3 notebook from the New menu, as shown
here:

Figure 1.10: Jupyter home screen

https://packt.link/GHPSn


3. Make your very first cell a Markdown cell by typing m while in command
mode (press Esc to enter command mode), then type a number sign, #, at the
beginning of the first line, followed by a space, for a heading. Add a title for
your notebook here. On the next few lines, place a description.

Here is a screenshot of an example, including other kinds of Markdown such
as bold, italics, and the way to write code-style text in a Markdown cell:

Figure 1.11: Unrendered Markdown cell

Note that it is good practice to add a title and brief description for your
notebook, to identify its purpose to readers.

4. Press Shift + Enter to render the Markdown cell.

This should also create a new cell, which will be a code cell. You can change
it to a Markdown cell by pressing m, and back to a code cell by pressing y.
You will know it's a code cell because of the In [ ]: next to it.

5. Type import pandas as pd in the new cell, as shown in the
following screenshot:

Figure 1.12: Rendered Markdown cell and code cell

After you execute this cell, the pandas module will be loaded into your
computing environment. It's common to import modules with as to create a



short alias such as pd. Now, we are going to use pandas to load the data file.
It's in Microsoft Excel format, so we can use pd.read_excel.

Note

For more information on all the possible options for pd.read_excel,
refer to the following documentation: https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.read_excel.html.

6. Import the dataset, which is in the Excel format, as a DataFrame using the
pd.read_excel() method, as shown in the following snippet:

df =
pd.read_excel('../../Data/default_of_credit_card_
clients'\

                   '__courseware_version_1_21_19.
xls')

Note that you need to point the Excel reader to wherever the file is located.
If it's in the same directory as your notebook, you could just enter the
filename. The pd.read_excel method will load the Excel file into a
DataFrame, which we've called df. By default, the first sheet of the
spreadsheet is loaded, which in this case is the only sheet. The power of
pandas is now available to us.

Let's do some quick checks in the next few steps. First, does the number of
rows and columns match what we know from looking at the file in Excel?

7. Use the .shape method to review the number of rows and columns, as
shown in the following snippet:

df.shape

Once you run the cell, you will obtain the following output:

Out[3]: (30000, 25)

This should match your observations from the spreadsheet. If it doesn't, you
would then need to look into the various options of pd.read_excel to

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html


see if you needed to adjust something.

With this exercise, we have successfully loaded our dataset into the Jupyter
notebook. You may also wish to try the .info() and .head() methods on the
DataFrame, which will tell you information about all the columns, and show you
the first few rows of the DataFrame, respectively. Now you're up and running
with your data in pandas.

As a final note, while this may already be clear, observe that if you define a
variable in one code cell, it is available to you in other code cells within the
notebook. This is because the code cells within a notebook are said to share scope
as long as the notebook is running, as shown in the following screenshot:

Figure 1.13: Variable in scope between cells

Every time you launch a Jupyter notebook, while the code and markdown cells
are saved from your previous work, the environment starts fresh and you will
need to reload all modules and data to start working with them again. You can
also shut down or restart the notebook manually using the Kernel menu of the
notebook. More details on Jupyter notebooks can be found in the documentation
here: https://jupyter-notebook.readthedocs.io/en/stable/.

note

In this book, each new exercise and activity will be done in a new Jupyter
notebook. However, some exercise notebooks also contain additional Python code
and outputs presented in the sections preceding the exercises. There are also
reference notebooks that contain the entirety of each chapter. For example, the
notebook for Chapter 1, Data Exploration and Cleaning, can be found here:
https://packt.link/zwofX.
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Getting Familiar with Data and Performing Data Cleaning

Now let's take a first look at this data. In your work as a data scientist, there
are several possible scenarios in which you may receive such a dataset.
These include the following:

1. You created the SQL query that generated the data.

2. A colleague wrote a SQL query for you, with your input.

3. A colleague who knows about the data gave it to you, but without your
input.

4. You are given a dataset about which little is known.

In cases 1 and 2, your input was involved in generating/extracting the data.
In these scenarios, you probably understood the business problem and then
either found the data you needed with the help of a data engineer or did
your own research and designed the SQL query that generated the data.
Often, especially as you gain more experience in your data science role, the
first step will be to meet with the business partner to understand and refine
the mathematical definition of the business problem. Then, you would play
a key role in defining what is in the dataset.

Even if you have a relatively high level of familiarity with the data, doing
data exploration and looking at summary statistics of different variables is
still an important first step. This step will help you select good features, or
give you ideas about how you can engineer new features. However, in the
third and fourth cases, where your input was not involved or you have little
knowledge about the data, data exploration is even more important.

Another important initial step in the data science process is examining the
data dictionary. A data dictionary is a document that explains what the
data owner thinks should be in the data, such as definitions of the column
labels. It is the data scientist's job to go through the data carefully to make



sure that these definitions match the reality of what is in the data. In cases 1
and 2, you will probably need to create the data dictionary yourself, which
should be considered essential project documentation. In cases 3 and 4, you
should seek out the dictionary if at all possible.

The case study data we'll use in this book is similar to case 3 here.
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The Business Problem

Our client is a credit card company. They have brought us a dataset that
includes some demographics and recent financial data, over the past 6
months, for a sample of 30,000 of their account holders. This data is at the
credit account level; in other words, there is one row for each account (you
should always clarify what the definition of a row is, in a dataset). Rows are
labeled by whether, in the next month after the 6-month historical data
period, an account owner has defaulted, or in other words, failed to make
the minimum payment.

Goal

Your goal is to develop a predictive model for whether an account will
default next month, given demographics and historical data. Later in the
book, we'll discuss the practical application of the model.

The data is already prepared, and a data dictionary is available. The dataset
supplied with the book,
default_of_credit_card_clients__courseware_version
_1_21_19.xls, is a modified version of this dataset in the UCI Machine
Learning Repository:
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients. Have
a look at that web page, which includes the data dictionary.
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Data Exploration Steps

Now that we've understood the business problem and have an idea of what
is supposed to be in the data, we can compare these impressions to what we
actually see in the data. Your job in data exploration is to not only look
through the data both directly and using numerical and graphical summaries
but also to think critically about whether the data make sense and match
what you have been told about it. These are helpful steps in data
exploration:

1. How many columns are there in the data?

These may be features, responses, or metadata.

2. How many rows (samples) are there?

3. What kind of features are there? Which are categorical and which
are numerical?

Categorical features have values in discrete classes such as "Yes,"
"No," or "Maybe."

Numerical features are typically on a continuous numerical scale, such
as dollar amounts.

4. What does the data look like in these features?

To see this, you can examine the range of values in numeric features,
or the frequency of different classes in categorical features, for
example.

5. Is there any missing data?

We have already answered questions 1 and 2 in the previous section; there
are 30,000 rows and 25 columns. As we start to explore the rest of these



questions in the following exercise, pandas will be our go-to tool. We begin
by verifying basic data integrity in the next exercise.

Note

Note that compared to the website's description of the data dictionary, X6-
X11 are called PAY_1-PAY_6 in our data. Similarly, X12-X17 are
BILL_AMT1-BILL_AMT6, and X18-X23 are PAY_AMT1-PAY_AMT6.
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Exercise 1.03: Verifying Basic Data Integrity

In this exercise, we will perform a basic check on whether our dataset contains
what we expect and verify whether there is the correct number of samples.

The data is supposed to have observations for 30,000 credit accounts. While there
are 30,000 rows, we should also check whether there are 30,000 unique account
IDs. It's possible that, if the SQL query used to generate the data was run on an
unfamiliar schema, values that are supposed to be unique are in fact not unique.

To examine this, we can check if the number of unique account IDs is the same as
the number of rows. Perform the following steps to complete the exercise:

Note

The Jupyter notebook for this exercise can be found here:
https://packt.link/EapDM.

1. Import pandas, load the data, and examine the column names by running the
following command in a cell, using Shift + Enter:

import pandas as pd

df =
pd.read_excel('../Data/default_of_credit_card'\

                   '_clients__courseware_version_
1_21_19.xls')

df.columns

The .columns method of the DataFrame is employed to examine all the
column names. You will obtain the following output once you run the cell:

https://packt.link/EapDM


Figure 1.14: Columns of the dataset

As can be observed, all column names are listed in the output. The account
ID column is referenced as ID. The remaining columns appear to be our
features, with the last column being the response variable. Let's quickly
review the dataset information that was given to us by the client:

LIMIT_BAL: Amount of credit provided (in New Taiwanese (NT) dollar)
including individual consumer credit and the family (supplementary) credit.

SEX: Gender (1 = male; 2 = female).

Note

We will not be using the gender data to decide credit-worthiness owing to
ethical considerations.

EDUCATION: Education (1 = graduate school; 2 = university; 3 = high
school; 4 = others).

MARRIAGE: Marital status (1 = married; 2 = single; 3 = others).

AGE: Age (year).

PAY_1–PAY_6: A record of past payments. Past monthly payments,
recorded from April to September, are stored in these columns.

PAY_1 represents the repayment status in September; PAY_2 is the
repayment status in August; and so on up to PAY_6, which represents the
repayment status in April.

The measurement scale for the repayment status is as follows: -1 = pay duly;
1 = payment delay for 1 month; 2 = payment delay for 2 months; and so on
up to 8 = payment delay for 8 months; 9 = payment delay for 9 months and
above.

BILL_AMT1–BILL_AMT6: Bill statement amount (in NT dollar).



BILL_AMT1 represents the bill statement amount in September;
BILL_AMT2 represents the bill statement amount in August; and so on up to
BILL_AMT6, which represents the bill statement amount in April.

PAY_AMT1–PAY_AMT6: Amount of previous payment (NT dollar).
PAY_AMT1 represents the amount paid in September; PAY_AMT2
represents the amount paid in August; and so on up to PAY_AMT6, which
represents the amount paid in April.

Let's now use the .head() method in the next step to observe the first few
rows of data. By default, this will return the first 5 rows.

2. Run the following command in the subsequent cell:

df.head()

Here is a portion of the output you should see:

Figure 1.15: .head() of a DataFrame

The ID column seems like it contains unique identifiers. Now, to verify
whether they are in fact unique throughout the whole dataset, we can count
the number of unique values using the .nunique() method on the Series
(aka column) ID. We first select the column using square brackets.



3. Select the column (ID) and count unique values using the following
command:

df['ID'].nunique()

Here's the output:

29687

As can be seen from the preceding output, the number of unique entries is
29,687.

4. Run the following command to obtain the number of rows in the dataset:

df.shape

As can be observed in the following output, the total number of rows in the
dataset is 30,000:

(30000, 25)

We see here that the number of unique IDs is less than the number of rows.
This implies that the ID is not a unique identifier for the rows of the data. So
we know that there is some duplication of IDs. But how much? Is one ID
duplicated many times? How many IDs are duplicated?

We can use the .value_counts() method on the ID Series to start to
answer these questions. This is similar to a group by/count procedure in
SQL. It will list the unique IDs and how often they occur. We will perform
this operation in the next step and store the value counts in the id_counts
variable.

5. Store the value counts in the variable defined as id_counts and then
display the stored values using the .head() method, as shown:

id_counts = df['ID'].value_counts()

id_counts.head()

You will obtain the following output:



Figure 1.16: Getting value counts of the account IDs

Note that .head() returns the first five rows by default. You can specify
the number of items to be displayed by passing the required number in the
parentheses, ().

6. Display the number of duplicated entries by running another value count:

id_counts.value_counts()

You will obtain the following output:

Figure 1.17: Getting value counts of the account IDs

Here, we can see that most IDs occur exactly once, as expected. However, 313
IDs occur twice. So, no ID occurs more than twice. With this information, we are
ready to begin taking a closer look at this data quality issue and go about fixing it.
We will create Boolean masks to do this.
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Boolean Masks

To help clean the case study data, we introduce the concept of a logical
mask, also known as a Boolean mask. A logical mask is a way to filter an
array, or Series, by some condition. For example, we can use the "is equal
to" operator in Python, ==, to find all locations of an array that contain a
certain value. Other comparisons, such as "greater than" (>), "less than" (<),
"greater than or equal to" (>=), and "less than or equal to" (<=), can be used
similarly. The output of such a comparison is an array or Series of
True/False values, also known as Boolean values. Each element of the
output corresponds to an element of the input, is True if the condition is
met, and is False otherwise. To illustrate how this works, we will use
synthetic data. Synthetic data is data that is created to explore or illustrate a
concept. First, we are going to import the NumPy package, which has many
capabilities for generating random numbers, and give it the alias np. We'll
also import the default random number generator from the random module
within NumPy:

import numpy as np

from numpy.random import default_rng

Now we use what's called a seed for the random number generator. If you set
the seed, you will get the same results from the random number generator
across runs. Otherwise, this is not guaranteed. This can be a helpful option if
you use random numbers in some way in your work and want to have
consistent results every time you run a notebook. We arbitrarily set the seed
to 12345:

rg = default_rng(12345)

Next, we generate 100 random integers, using the integers method of
rg, with the appropriate arguments. We generate integers from between 1
and 4. Note the high argument specifies an open endpoint by default, that
is, the upper limit of the range is not included:



random_integers =
rg.integers(low=1,high=5,size=100)

Let's look at the first five elements of this array, with
random_integers[:5]. The output should appear as follows:

array ([3, 1, 4, 2, 1])

Suppose we wanted to know the locations of all elements of
random_integers equal to 3. We could create a Boolean mask to do
this:

is_equal_to_3 = random_integers == 3

From examining the first 5 elements, we know the first element is equal to 3,
but none of the rest are. So in our Boolean mask, we expect True in the first
position and False in the next 4 positions. Is this the case?

is_equal_to_3[:5]

The preceding code should give this output:

array([ True, False, False, False, False])

This is what we expected. This shows the creation of a Boolean mask. But
what else can we do with them? Suppose we wanted to know how many
elements were equal to 3. To know this, you can take the sum of a Boolean
mask, which interprets True as 1 and False as 0:

sum(is_equal_to_3)

This should give us the following output:

31

This makes sense, as with a random, equally likely choice of 4 possible
values, we would expect each value to appear about 25% of the time. In
addition to seeing how many values in the array meet the Boolean condition,



we can also use the Boolean mask to select the elements of the array that
meet that condition. Boolean masks can be used directly to index arrays, as
shown here:

random_integers[is_equal_to_3]

This outputs the elements of random_integers meeting the Boolean
condition we specified. In this case, the 31 elements equal to 3:

Figure 1.18: Using the Boolean mask to index an array

Now you know the basics of Boolean arrays, which are useful in many
situations. In particular, you can use the .loc method of DataFrames to
index the rows by a Boolean mask, and the columns by label, to get values
of various columns meeting a condition in a potentially different column.
Let's continue exploring the case study data with these skills.

Note

The Jupyter notebook containing the code and the corresponding outputs
presented in the preceding section can be found at https://packt.link/pT9gT.
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Exercise 1.04: Continuing Verification of Data Integrity

In this exercise, with our knowledge of Boolean arrays, we will examine some of
the duplicate IDs we discovered. In Exercise 03, Verifying Basic Data Integrity,
we learned that no ID appears more than twice. We can use this learning to locate
the duplicate IDs and examine them. Then we take action to remove rows of
dubious quality from the dataset. Perform the following steps to complete the
exercise:

Note

The Jupyter notebook for this exercise can be found here:
https://packt.link/snAP0.

1. Continuing where we left off in Exercise 1.03, Verifying Basic Data
Integrity, we need to get the locations of the id_counts Series, where the
count is 2, to locate the duplicates. First, we load the data and get the value
counts of IDs to bring us to where we left off in Exercise 03, Verifying Basic
Data Integrity, then we create a Boolean mask locating the duplicated IDs
with a variable called dupe_mask and display the first five elements. Use
the following commands:

import pandas as pd

df =
pd.read_excel('../../Data/default_of_credit_card_
clients'\

                   '__courseware_version_1_21_19.
xls')

id_counts = df['ID'].value_counts()

id_counts.head()

dupe_mask = id_counts == 2

dupe_mask[0:5]

https://packt.link/snAP0


You will obtain the following output (note the ordering of IDs may be
different in your output, as value_counts sorts on frequency, not the
index of IDs):

Figure 1.19: A Boolean mask to locate duplicate IDs

Note that in the preceding output, we are displaying only the first five entries
using dupe_mask to illustrate the contents of this array. You can edit the
integer indices in the square brackets ([]) to change the number of
entries displayed.

Our next step is to use this logical mask to select the IDs that are duplicated.
The IDs themselves are contained as the index of the id_count Series. We
can access the index in order to use our logical mask for selection purposes.

2. Access the index of id_count and display the first five rows as context
using the following command:

id_counts.index[0:5]

With this, you will obtain the following output:

Figure 1.20: Duplicated IDs

3. Select and store the duplicated IDs in a new variable called dupe_ids
using the following command:

dupe_ids = id_counts.index[dupe_mask]



4. Convert dupe_ids to a list and then obtain the length of the list using the
following commands:

dupe_ids = list(dupe_ids)

len(dupe_ids)

You should obtain the following output:

313

We changed the dupe_ids variable to a list, as we will need it in this
form for future steps. The list has a length of 313, as can be seen in the
preceding output, which matches our knowledge of the number of duplicate
IDs from the value count.

5. We verify the data in dupe_ids by displaying the first five entries using
the following command:

dupe_ids[0:5]

We obtain the following output:

Figure 1.21: Making a list of duplicate IDs

We can observe from the preceding output that the list contains the required
entries of duplicate IDs. We're now in a position to examine the data for the
IDs in our list of duplicates. In particular, we'd like to look at the values of
the features, to see what, if anything, might be different between these
duplicate entries. We will use the .isin and .loc methods of the
DataFrame df for this purpose.

Using the first three IDs on our list of dupes, dupe_ids[0:3], we will
plan to first find the rows containing these IDs. If we pass this list of IDs to
the .isin method of the ID Series, this will create another logical mask we



can use on the larger DataFrame to display the rows that have these IDs. The
.isin method is nested in a .loc statement indexing the DataFrame in
order to select the location of all rows containing True in the Boolean
mask. The second argument of the .loc indexing statement is :, which
implies that all columns will be selected. By performing the following steps,
we are essentially filtering the DataFrame in order to view all the columns
for the first three duplicate IDs.

6. Run the following command in your notebook to execute the plan we
formulated in the previous step:

df.loc[df['ID'].isin(dupe_ids[0:3]),:]

Figure 1.22: Examining the data for duplicate IDs

What we observe here is that each duplicate ID appears to have one row with
what seems like valid data, and one row that's entirely zeros. Take a moment
and think to yourself what you would do with this knowledge.

After some reflection, it should be clear that you ought to delete the rows
with all zeros. Perhaps these arose through a faulty join condition in the SQL
query that generated the data? Regardless, a row of all zeros is definitely
invalid data as it makes no sense for someone to have an age of 0, a credit
limit of 0, and so on.

One approach to deal with this issue would be to find rows that have all
zeros, except for the first column, which has the IDs. These would be invalid
data in any case, and it may be that if we get rid of all of these, we would



also solve our problem of duplicate IDs. We can find the entries of the
DataFrame that are equal to zero by creating a Boolean matrix that is the
same size as the whole DataFrame, based on the "is equal to zero" condition.

7. Create a Boolean matrix of the same size as the entire DataFrame using ==,
as shown:

df_zero_mask = df == 0

In the next steps, we'll use df_zero_mask, which is another DataFrame
containing Boolean values. The goal will be to create a Boolean Series,
feature_zero_mask, that identifies every row where all the elements
starting from the second column (the features and response, but not the IDs)
are 0. To do so, we first need to index df_zero_mask using the integer
indexing (.iloc) method. In this method, we pass (:) to examine all rows
and (1:) to examine all columns starting with the second one (index 1).
Finally, we will apply the all() method along the column axis (axis=1),
which will return True if and only if every column in that row is True.
This is a lot to think about, but it's pretty simple to code, as will be observed
in the following step. The goal is to get one Series, that is the same length as
the DataFrame, telling us which rows have all zeros besides the ID.

8. Create the Boolean Series feature_zero_mask, as shown in the
following code:

feature_zero_mask =
df_zero_mask.iloc[:,1:].all(axis=1)

9. Calculate the sum of the Boolean Series using the following command:

sum(feature_zero_mask)

You should obtain the following output:

315

The preceding output tells us that 315 rows have zeros for every column but
the first one. This is greater than the number of duplicate IDs (313), so if we
delete all the "zero rows," we may get rid of the duplicate ID problem.



10. Clean the DataFrame by eliminating the rows with all zeros, except for the
ID, using the following code:

df_clean_1 = df.loc[~feature_zero_mask,:].copy()

While performing the cleaning operation in the preceding step, we return a
new DataFrame called df_clean_1. Notice that here we've used the
.copy() method after the .loc indexing operation to create a copy of this
output, as opposed to a view on the original DataFrame. You can think of
this as creating a new DataFrame, as opposed to referencing the original one.
Within the .loc method, we used the logical not operator, ~, to select all
the rows that don't have zeros for all the features and the response variable,
and : to select all columns. This is the valid data we wish to keep. After
doing this, we now want to know if the number of remaining rows is equal to
the number of unique IDs.

11. Verify the number of rows and columns in df_clean_1 by running the
following code:

df_clean_1.shape

You will obtain the following output:

(29685, 25)

12. Obtain the number of unique IDs by running the following code:

df_clean_1['ID'].nunique()

Here's the output:

29685

From the preceding output, we can see that we have successfully eliminated
duplicates, as the number of unique IDs is equal to the number of rows. Now
take a breath and pat yourself on the back. That was a whirlwind
introduction to quite a few pandas techniques for indexing and
characterizing data. Now that we've filtered out the duplicate IDs, we're in a
position to start looking at the actual data itself: the features, and eventually,
the response variable.



After completing this exercise, save your progress as follows, to a CSV (comma-
separated value) file. Notice we don't include the index of the DataFrame when
saving, as this is not necessary and can create extra columns when we load it
later:

df_clean_1.to_csv('../../Data/df_clean_1.csv',
index=False)
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Exercise 1.05: Exploring and Cleaning the Data

Thus far, we have identified a data quality issue related to the metadata: we had
been told that every sample from our dataset corresponded to a unique account
ID, but found that this was not the case. We were able to use logical indexing and
pandas to correct this issue. This was a fundamental data quality issue, having to
do simply with what samples were present, based on the metadata. Aside from
this, we are not really interested in the metadata column of account IDs: these
will not help us develop a predictive model for credit default.

Now, we are ready to start examining the values of the features and response
variable, the data we will use to develop our predictive model. Perform the
following steps to complete this exercise:

Note

The Jupyter notebook for this exercise can be found here:
https://packt.link/q0huQ.

1. Load the results of the previous exercise and obtain the data type of the
columns in the data by using the .info() method as shown:

import pandas as pd

df_clean_1 =
pd.read_csv('../../Data/df_clean_1.csv')

df_clean_1.info()

You should see the following output:

https://packt.link/q0huQ


Figure 1.23: Getting column metadata

We can see in Figure 1.23 that there are 25 columns. Each row has 29,685
non-null values, according to this summary, which is the number of rows in
the DataFrame. This would indicate that there is no missing data, in the
sense that each cell contains some value. However, if there is a fill value to
represent missing data, that would not be evident here.

We also see that most columns say int64 next to them, indicating they are
an integer data type, that is, numbers such as ..., -2, -1, 0, 1, 2,... . The
exceptions are ID and PAY_1. We are already familiar with ID; this
contains strings, which are account IDs. What about PAY_1? According to
the data dictionary, we'd expect this to contain integers, like all the other
features. Let's take a closer look at this column.

2. Use the .head(n) pandas method to view the top n rows of the PAY_1
Series:

df_clean_1['PAY_1'].head(5)



You should obtain the following output:

Figure 1.24: Examine a few columns' contents

The integers on the left of the output are the DataFrame index, which is
simply consecutive integers starting with 0. The data from the PAY_1
column is shown on the right. This is supposed to be the payment status of
the most recent month's bill, using the values –1, 1, 2, 3, and so on.
However, we can see that there are values of 0 here, which are not
documented in the data dictionary. According to the data dictionary, "The
measurement scale for the repayment status is: -1 = pay duly; 1 = payment
delay for one month; 2 = payment delay for two months; . . .; 8 = payment
delay for eight months; 9 = payment delay for nine months and above"
(https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients). Let's
take a closer look, using the value counts of this column.

3. Obtain the value counts for the PAY_1 column by using the
.value_counts() method:

df_clean_1['PAY_1'].value_counts()

You should see the following output:

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients


Figure 1.25: Value counts of the PAY_1 column

The preceding output reveals the presence of two undocumented values: 0
and –2, as well as the reason this column was imported by pandas as an
object data type, instead of int64 as we would expect for integer data:
there is a 'Not available' string present in this column, symbolizing
missing data. Later on in the book, we'll come back to this when we consider
how to deal with missing data. For now, we'll remove rows of the dataset in
which this feature has a missing value.

4. Use a logical mask with the != operator (which means "does not equal" in
Python) to find all the rows that don't have missing data for the PAY_1
feature:

valid_pay_1_mask = df_clean_1['PAY_1'] != 'Not
available'

valid_pay_1_mask[0:5]

By running the preceding code, you will obtain the following output:



Figure 1.26: Creating a Boolean mask

5. Check how many rows have no missing data by calculating the sum of the
mask:

sum(valid_pay_1_mask)

You will obtain the following output:

26664

We see that 26,664 rows do not have the value 'Not available' in the
PAY_1 column. We saw from the value count that 3,021 rows do have this
value. Does this make sense? From Figure 1.23 we know there are 29,685
entries (rows) in the dataset, and 29,685 – 3,021 = 26,664, so this checks
out.

6. Clean the data by eliminating the rows with the missing values of PAY_1
as shown:

df_clean_2 =
df_clean_1.loc[valid_pay_1_mask,:].copy()

7. Obtain the shape of the cleaned data using the following command:

df_clean_2.shape

You will obtain the following output:

(26664, 25)

After removing these rows, we check that the resulting DataFrame has the
expected shape. You can also check for yourself whether the value counts
indicate the desired values have been removed like this:
df_clean_2['PAY_1'].value_counts().

Lastly, so this column's data type can be consistent with the others, we will
cast it from the generic object type to int64 like all the other features,
using the .astype method. Then we select a couple of columns, including
PAY_1, to examine the data types and make sure it worked.



8. Run the following command to convert the data type for PAY_1 from
object to int64 and show the column metadata for PAY_1 and PAY_2
by using a list to select multiple columns:

df_clean_2['PAY_1'] =
df_clean_2['PAY_1'].astype('int64')

df_clean_2[['PAY_1', 'PAY_2']].info()

This is the output you will obtain:

Figure 1.27: Check the data type of the cleaned column

Congratulations, you have completed your second data cleaning operation!
However, if you recall, during this process we also noticed the undocumented
values of –2 and 0 in PAY_1. Now, let's imagine we got back in touch with our
business partner and learned the following information:

-2 means the account started that month with a zero balance and never used
any credit.

-1 means the account had a balance that was paid in full.

0 means that at least the minimum payment was made, but the entire balance
wasn't paid (that is, a positive balance was carried to the next month).

We thank our business partner since this answers our questions, for now.
Maintaining a good line of communication and working relationship with the
business partner is important, as you can see here, and may determine the success
or failure of a project.

In your notebook, save your progress from this exercise like this:



df_clean_2.to_csv('../../Data/df_clean_2.csv',
index=False)
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Data Quality Assurance and Exploration

So far, we remedied two data quality issues just by asking basic questions
or by looking at the .info() summary. Let's now take a look at the first
few columns of data. Before we get to the historical bill payments, we have
the credit limits of the LIMIT_BAL accounts, and the SEX, EDUCATION,
MARRIAGE, and AGE demographic features. Our business partner has
reached out to us, to let us know that gender should not be used to predict
credit-worthiness, as this is unethical by their standards. So we keep this in
mind for future reference. Now we'll explore the rest of these columns,
making any corrections that are necessary.

In order to further explore the data, we will use histograms. Histograms are
a good way to visualize data that is on a continuous scale, such as currency
amounts and ages. A histogram groups similar values into bins and shows
the number of data points in these bins as a bar graph.

To plot histograms, we will start to get familiar with the graphical
capabilities of pandas. pandas relies on another library called Matplotlib to
create graphics, so we'll also set some options using matplotlib. Using
these tools, we'll also learn how to get quick statistical summaries of data in
pandas.
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Exercise 1.06: Exploring the Credit Limit and Demographic
Features

In this exercise, we'll start our exploration of data with the credit limit and age
features. We will visualize them and get summary statistics to check that the data
contained in these features is sensible. Then we will look at the education and
marriage categorical features to see if the values there make sense, correcting
them as necessary. LIMIT_BAL and AGE are numerical features, meaning they
are measured on a continuous scale. Consequently, we'll use histograms to
visualize them. Perform the following steps to complete the exercise:

Note

The Jupyter notebook for this exercise found here: https://packt.link/PRdtP.

1. In addition to pandas, import matplotlib and set up some plotting
options with this code snippet. Note the use of comments in Python with #.
Anything appearing after a # on a line will be ignored by the Python
interpreter:

import pandas as pd

import matplotlib.pyplot as plt #import plotting
package

#render plotting automatically

%matplotlib inline

import matplotlib as mpl #additional plotting
functionality

mpl.rcParams['figure.dpi'] = 400 #high resolution
figures

This imports matplotlib and uses .rcParams to set the resolution
(dpi = dots per inch) for a nice crisp image; you may not want to worry
about this last part unless you are preparing things for presentation, as it
could make the images quite large in your notebook.

https://packt.link/PRdtP


2. Load our progress from the previous exercise using the following code:

df_clean_2 =
pd.read_csv('../Data/df_clean_2.csv'),

3. Run df_clean_2[['LIMIT_BAL', 'AGE']].hist() and you
should see the following histograms:

Figure 1.28: Histograms of the credit limit and age data

This is a nice visual snapshot of these features. We can get a quick,
approximate look at all of the data in this way. In order to see statistics such
as the mean and median (that is, the 50th percentile), there is another helpful
pandas function.

4. Generate a tabular report of summary statistics using the following
command:

df_clean_2[['LIMIT_BAL', 'AGE']].describe()

You should see the following output:



Figure 1.29: Statistical summaries of credit limit and age data

Based on the histograms and the convenient statistics computed by
.describe(), which include a count of non-nulls, the mean and standard
deviation, minimum, maximum, and quartiles, we can make a few
judgments.

LIMIT_BAL, the credit limit, seems to make sense. The credit limits have a
minimum of 10,000. This dataset is from Taiwan; the exact unit of currency
(NT dollar) may not be familiar, but intuitively, a credit limit should be
above zero. You are encouraged to look up the conversion to your local
currency and consider these credit limits. For example, 1 US dollar is about
30 NT dollars.

The AGE feature also looks reasonably distributed, with no one under the age
of 21 having a credit account.

For the categorical features, a look at the value counts is useful, since there
are relatively few unique values.

5. Obtain the value counts for the EDUCATION feature using the following
code:

df_clean_2['EDUCATION'].value_counts()

You should see this output:



Figure 1.30: Value counts of the EDUCATION feature

Here, we see undocumented education levels 0, 5, and 6, as the data
dictionary describes only Education (1 = graduate school; 2
= university; 3 = high school; 4 = others). Our
business partner tells us they don't know about the others. Since they are not
very prevalent, we will lump them in with the others category, which
seems appropriate.

6. Run this code to combine the undocumented levels of the EDUCATION
feature into the level for others and then examine the results:

df_clean_2['EDUCATION'].replace(to_replace=[0, 5,
6],\

                                value=4,
inplace=True)

df_clean_2['EDUCATION'].value_counts()

The pandas .replace method makes doing the replacements described in
the preceding step pretty quick. Once you run the code, you should see this
output:

Figure 1.31: Cleaning the EDUCATION feature



Note that here we make this change in place (inplace=True). This
means that, instead of returning a new DataFrame, this operation will make
the change on the existing DataFrame.

7. Obtain the value counts for the MARRIAGE feature using the following code:

df_clean_2['MARRIAGE'].value_counts()

You should obtain the following output:

Figure 1.32: Value counts of the raw MARRIAGE feature

The issue here is similar to that encountered for the EDUCATION feature;
there is a value, 0, which is not documented in the data dictionary: 1 =
married; 2 = single; 3 = others. So we'll lump it in with
others.

8. Change the values of 0 in the MARRIAGE feature to 3 and examine the result
with this code:

df_clean_2['MARRIAGE'].replace(to_replace=0,
value=3, \

                               inplace=True)

df_clean_2['MARRIAGE'].value_counts()

The output should be as follows:

Figure 1.33: Value counts of the cleaned MARRIAGE feature



We've now accomplished a lot of exploration and cleaning of the data. We will do
some more advanced visualization and exploration of the financial history
features that come after this in the DataFrame, later. First, we'll consider the
meaning of the EDUCATION feature, a categorical feature in our dataset.

Save your progress from this exercise as follows:

df_clean_2.to_csv('../../Data/df_clean_2_01.csv',
index=False)
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Deep Dive: Categorical Features

Machine learning algorithms only work with numbers. If your data contains
text features, for example, these would require transformation to numbers in
some way. We learned above that the data for our case study is, in fact,
entirely numerical. However, it's worth thinking about how it got to be that
way. In particular, consider the EDUCATION feature.

This is an example of what is called a categorical feature: you can imagine
that as raw data, this column consisted of the text labels graduate
school, university, high school, and others. These are called
the levels of the categorical feature; here, there are four levels. It is only
through a mapping, which has already been chosen for us, that this data
exists as the numbers 1, 2, 3, and 4 in our dataset. This particular assignment
of categories to numbers creates what is known as an ordinal feature, since
the levels are mapped to numbers in order. As a data scientist, at a minimum,
you need to be aware of such mappings, if you are not choosing them
yourself.

What are the implications of this mapping?

It makes some sense that the education levels are ranked, with 1
corresponding to the highest level of education in our dataset, 2 to the next
highest, 3 to the next, and 4 presumably including the lowest levels.
However, when you use this encoding as a numerical feature in a machine
learning model, it will be treated just like any other numerical feature. For
some models, this effect may not be desired.

What if a model seeks to find a straight-line relationship between the
features and response?

This may seem like an arbitrary question, although later in the book you will
learn the importance of distinguishing between linear and non-linear models.
In this section, we will briefly introduce the concept that some models do
look for linear relationships between features and the response variable.



Whether or not this would work well in the case of the education feature
depends on the actual relationship between different levels of education and
the outcome we are trying to predict.

Here, we examine two hypothetical cases of synthetic data with ordinal
categorical variables, each with 10 levels. The levels measure the self-
reported satisfaction of customers visiting a website. The average number of
minutes spent on the website for customers reporting each level is plotted on
the y-axis. We've also plotted the line of best fit in each case to illustrate how
a linear model would deal with this data, as shown in the following figure:

Figure 1.34: Ordinal features may or may not work well in a linear
model

We can see that if an algorithm assumes a linear (straight-line) relationship
between the features and response variable, this may or may not work well
depending on the true relationship. Notice that in this synthetic example, we
are modeling a regression problem: the response variable takes on a
continuous range of numbers. While our case study involves a classification
problem, some classification algorithms such as logistic regression also
assume a linear effect of the features. We will discuss this in greater detail
later when we get into modeling the data for our case study.

Roughly speaking, for a binary classification problem, meaning the response
variable only has two outcomes, which we'll assume are coded as 0 and 1,
you can look at the different levels of a categorical feature in terms of the
average values of the response variable within each level. These average



values represent the "rates" of the positive class (that is, the samples where
the response variable = 1) for each level. This can give you an idea of
whether an ordinal encoding will work well with a linear model. Assuming
you've imported the same packages in your Jupyter notebook as in the
previous sections, you can quickly look at this using a groupby/aggregate
procedure and a bar plot in pandas.

This will group the data by the values in the EDUCATION feature and then
within each group aggregate the data together using the average of the
default payment next month response variable:

df_clean_2 =
pd.read_csv('../../Data/df_clean_2_01.csv')

df_clean_2.groupby('EDUCATION').agg({'default
payment next '\

                                     'month':'mea
n'})\

                               .plot.bar(legend=F
alse)

plt.ylabel('Default rate')

plt.xlabel('Education level: ordinal encoding')

Once you run the code, you should obtain the following output:



Figure 1.35: Default rate within education levels

Similar to Example 2 in Figure 1.34, it looks like a straight-line fit would
probably not be the best description of the data here. In case a feature has a
non-linear effect like this, it may be better to use a more complex algorithm
such as a decision tree or random forest. Or, if a simpler and more
interpretable linear model such as logistic regression is desired, we could
avoid an ordinal encoding and use a different way of encoding categorical
variables. A popular way of doing this is called one-hot encoding (OHE).

OHE is a way to transform a categorical feature, which may consist of text
labels in the raw data, into a numerical feature that can be used in
mathematical models.

Let's learn about this in an exercise. And if you are wondering why a logistic
regression is more interpretable and a random forest is more complex, we
will be learning about these concepts in detail in later chapters.
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Exercise 1.07: Implementing OHE for a Categorical Feature

In this exercise, we will "reverse engineer" the EDUCATION feature in the dataset
to obtain the text labels that represent the different education levels, then show
how to use pandas to create an OHE. As a preliminary step, please set up the
environment and load in the progress from previous exercises:

import pandas as pd

import matplotlib as mpl #additional plotting
functionality

mpl.rcParams['figure.dpi'] = 400 #high resolution
figures

df_clean_2 =
pd.read_csv('../../Data/df_clean_2_01.csv')

First, let's consider our EDUCATION feature before it was encoded as an ordinal.
From the data dictionary, we know that 1 = graduate school, 2 = university, 3 =
high school, 4 = others. We would like to recreate a column that has these strings,
instead of numbers. Perform the following steps to complete the exercise:

Note

The Jupyter notebook for this exercise found here: https://packt.link/akAYJ.

1. Create an empty column for the categorical labels called EDUCATION_CAT.
Using the following command, every row will contain the string 'none':

df_clean_2['EDUCATION_CAT'] = 'none'

2. Examine the first few rows of the DataFrame for the EDUCATION and
EDUCATION_CAT columns:

df_clean_2[['EDUCATION',
'EDUCATION_CAT']].head(10)

The output should appear as follows:

https://packt.link/akAYJ


Figure 1.36: Selecting columns and viewing the first 10 rows

We need to populate this new column with the appropriate strings. pandas
provides a convenient functionality for mapping all values of a Series onto
new values. This function is in fact called .map and relies on a dictionary to
establish the correspondence between the old values and the new values. Our
goal here is to map the numbers in EDUCATION onto the strings they
represent. For example, where the EDUCATION column equals the number
1, we'll assign the 'graduate school' string to the EDUCATION_CAT
column, and so on for the other education levels.

3. Create a dictionary that describes the mapping for education categories using
the following code:

cat_mapping = {1: "graduate school",\

               2: "university",\

               3: "high school",\

               4: "others"}



4. Apply the mapping to the original EDUCATION column using .map and
assign the result to the new EDUCATION_CAT column:

df_clean_2['EDUCATION_CAT'] =
df_clean_2['EDUCATION']\

                              .map(cat_mapping)

df_clean_2[['EDUCATION',
'EDUCATION_CAT']].head(10)

After running those lines, you should see the following output:

Figure 1.37: Examining the string values corresponding to the ordinal
encoding of EDUCATION

Excellent! Note that we could have skipped Step 1, where we assigned the
new column with 'none', and gone straight to Steps 3 and 4 to create the
new column. However, sometimes it's useful to create a new column
initialized with a single value, so it's worth knowing how to do that.

Now we are ready to one-hot encode. We can do this by passing a Series of a
DataFrame to the pandas get_dummies() function. The function got
this name because one-hot encoded columns are also referred to as dummy



variables. The result will be a new DataFrame, with as many columns as
there are levels of the categorical variable.

5. Run this code to create a one-hot encoded DataFrame of the
EDUCATION_CAT column. Examine the first 10 rows:

edu_ohe =
pd.get_dummies(df_clean_2['EDUCATION_CAT'])

edu_ohe.head(10)

This should produce the following output:

Figure 1.38: DataFrame of one-hot encoding

You can now see why this is called "one-hot encoding": across all these
columns, any particular row will have a 1 in exactly 1 column, and 0s in the
rest. For a given row, the column with the 1 should match up to the level of
the original categorical variable. To check this, we need to concatenate this
new DataFrame with the original one and examine the results side by side.
We will use the pandas concat function, to which we pass the list of
DataFrames we wish to concatenate, and the axis=1 keyword saying to
concatenate them horizontally; that is, along the column axis. This basically
means we are combining these two DataFrames "side by side," which we



know we can do because we just created this new DataFrame from the
original one: we know it will have the same number of rows, which will be
in the same order as the original DataFrame.

6. Concatenate the one-hot encoded DataFrame to the original DataFrame
as follows:

df_with_ohe = pd.concat([df_clean_2, edu_ohe],
axis=1)

df_with_ohe[['EDUCATION_CAT', 'graduate school',\

             'high school', 'university',
'others']].head(10)

You should see this output:

Figure 1.39: Checking the one-hot encoded columns

Alright, looks like this has worked as intended. OHE is another way to encode
categorical features that avoids the implied numerical structure of an ordinal
encoding. However, notice what has happened here: we have taken a single
column, EDUCATION, and exploded it out into as many columns as there were
levels in the feature. In this case, since there are only four levels, this is not such a
big deal. However, if your categorical variable had a very large number of levels,



you may want to consider an alternate strategy, such as grouping some levels
together into single categories.

This is a good time to save the DataFrame we've created here, which encapsulates
our efforts at cleaning the data and adding an OHE column.

Write the latest DataFrame to a file like this:
df_with_ohe.to_csv('../../Data/Chapter_1_cleaned_data.
csv', index=False).
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Exploring the Financial History Features in the Dataset

We are ready to explore the rest of the features in the case study dataset.
First set up the environment and load data from the previous exercise. This
can be done using the following snippet:

import pandas as pd

import matplotlib.pyplot as plt #import plotting
package

#render plotting automatically

%matplotlib inline

import matplotlib as mpl #additional plotting
functionality

mpl.rcParams['figure.dpi'] = 400 #high resolution
figures

import numpy as np

df =
pd.read_csv('../../Data/Chapter_1_cleaned_data.cs
v')

Note

The path to your CSV file may be different depending on where you saved it.

The remaining features to be examined are the financial history features.
They fall naturally into three groups: the status of the monthly payments for
the last 6 months, and the billed and paid amounts for the same period. First,
let's look at the payment statuses. It is convenient to break these out as a list
so we can study them together. You can do this using the following code:



pay_feats = ['PAY_1', 'PAY_2', 'PAY_3', 'PAY_4',
'PAY_5', \

             'PAY_6']

We can use the .describe method on these six Series to examine
summary statistics:

df[pay_feats].describe()

This should produce the following output:

Figure 1.40: Summary statistics of payment status features

Here, we observe that the range of values is the same for all of these
features: -2, -1, 0, ... 8. It appears that the value of 9, described in the data
dictionary as payment delay for nine months and above, is never observed.

We have already clarified the meaning of all of these levels, some of which
were not in the original data dictionary. Now let's look again at the
value_counts() of PAY_1, now sorted by the values we are counting,
which are the index of this Series:

df[pay_feats[0]].value_counts().sort_index()



This should produce the following output:

Figure 1.41: Value counts of the payment status for the previous month

Compared to the positive integer values, most of the values are either -2, -1,
or 0, which correspond to an account that was in good standing last month:
not used, paid in full, or made at least the minimum payment.

Notice that, because of the definition of the other values of this variable (1 =
payment delay for 1 month; 2 = payment delay for 2 months, and so on), this
feature is sort of a hybrid of categorical and numerical features. Why should
no credit usage correspond to a value of -2, while a value of 2 means a 2-
month late payment, and so forth? We should acknowledge that the
numerical coding of payment statuses -2, -1, and 0 constitute a decision
made by the creator of the dataset on how to encode certain categorical
features, which were then lumped in with a feature that is truly numerical:
the number of months of payment delay (values of 1 and larger). Later on,
we will consider the potential effects of this way of doing things on the
predictive capability of this feature.

For now, we will continue to explore the data. This dataset is small enough,
with 18 of these financial features and a handful of others, that we can afford
to individually examine every feature. If the dataset had thousands of
features, we would likely forgo this and instead explore dimensionality
reduction techniques, which are ways to condense the information in a large



number of features down to a smaller number of derived features, or,
alternatively, methods of feature selection, which can be used to isolate the
important features from a candidate field of many. We will demonstrate and
explain some feature selection techniques later. But on this dataset, it's
feasible to visualize every feature. As we know from the last chapter, a
histogram is a good way to get a quick visual interpretation of the same kind
of information we would get from tables of value counts. You can try this on
the most recent month's payment status features with
df[pay_feats[0]].hist(), to produce this:

Figure 1.42: Histogram of PAY_1 using default arguments

Now we're going to take an in-depth look at how this graphic is produced
and consider whether it is as informative as it should be. A key point about
the graphical functionality of pandas is that pandas plotting actually calls
matplotlib under the hood. Notice that the last available argument to the
pandas .hist() method is **kwds, which the documentation indicates
are matplotlib keyword arguments.

Note



For more information, refer to the following:
https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.hist.html.

Looking at the matplotlib documentation for
matplotlib.pyplot.hist shows additional arguments you can use
with the pandas .hist() method, such as the type of histogram to plot (see
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html for more
details). In general, to get more details about plotting functionality, it's
important to be aware of matplotlib, and in some scenarios, you will
want to use matplotlib directly, instead of pandas, to have more control
over the appearance of plots.

You should be aware that pandas uses matplotlib, which in turn uses
NumPy. When plotting histograms with matplotlib, the numerical
calculation for the values that make up the histogram is actually carried out
by the NumPy .histogram function. This is a key example of code reuse,
or "not reinventing the wheel." If a standard functionality, such as plotting a
histogram, already has a good implementation in Python, there is no reason
to create it anew. And if the mathematical operation to create the histogram
data for the plot is already implemented, this should be leveraged as well.
This shows the interconnectedness of the Python ecosystem.

We'll now address a couple of key issues that arise when calculating and
plotting histograms.

Number of bins

Histograms work by grouping together values into what are called bins. The
number of bins is the number of vertical bars that make up the discrete
histogram plot we see. If there are a large number of unique values on a
continuous scale, such as the histogram of ages we viewed earlier, histogram
plotting works relatively well "out of the box," with default arguments.
However, when the number of unique values is close to the number of bins,
the results may be a little misleading. The default number of bins is 10,
while in the PAY_1 feature, there are 11 unique values. In cases like this, it's
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better to manually set the number of histogram bins to the number of unique
values.

In our current example, since there are very few values in the higher bins of
PAY_1, the plot may not look much different. But in general, this is
important to keep in mind when plotting histograms.

Bin edges

The locations of the edges of the bins determine how the values get grouped
in the histogram. Instead of indicating the number of bins to the plotting
function, you could alternatively supply a list or array of numbers for the
bins keyword argument. This input would be interpreted as the bin edge
locations on the x-axis. The way values are grouped into bins in
matplotlib, using the edge locations, is important to understand. All
bins, except the last one, group together values as low as the left edge, and
up to but not including values as high as the right edge. In other words, the
left edge is closed but the right edge is open for these bins. However, the last
bin includes both edges; it has a closed left and right edge. This is of more
practical importance when you are binning a relatively small number of
unique values that may land on the bin edges.

For control over plot appearance, it's usually better to specify the bin edge
locations. We'll create an array of 12 numbers, which will result in 11 bins,
each one centered around 1 of the unique values of PAY_1:

pay_1_bins = np.array(range(-2,10)) - 0.5

pay_1_bins

The output shows the bin edge locations:

array([-2.5, -1.5, -0.5, 0.5, 1.5, 2.5,\

       3.5,4.5, 5.5, 6.5, 7.5,8.5])

As a final point of style, it is important to always label your plots so that
they are interpretable. We haven't yet done this manually, because in some



cases, pandas does it automatically, and in other cases, we simply left the
plots unlabeled. From now on, we will follow best practice and label all
plots. We use the xlabel and ylabel functions in matplotlib to add
axis labels to this plot. The code is as follows:

df[pay_feats[0]].hist(bins=pay_1_bins)

plt.xlabel('PAY_1')

plt.ylabel('Number of accounts')

The output should look like this:

Figure 1.43: A better histogram of PAY_1

Figure 1.43 represents an improved histogram, since the bars are centered
over the actual values in the data, and there is 1 bar per unique value. While
it's tempting, and often sufficient, to just call plotting functions with the
default arguments, one of your jobs as a data scientist is to create accurate
and representative data visualizations. To do that, sometimes you need to
dig into the details of plotting code, as we've done here.



What have we learned from this data visualization?

Since we already looked at the value counts, this confirms for us that most
accounts are in good standing (values -2, -1, and 0). For those that aren't, it's
more common for the "months late" to be a smaller number. This makes
sense; likely, most people are paying off their balances before too long.
Otherwise, their account may be closed or sold to a collection agency.
Examining the distribution of your features and making sure it seems
reasonable is a good thing to confirm with your client, as the quality of this
data underlies the predictive modeling you seek to do.

Now that we've established some good plotting style for histograms, let's use
pandas to plot multiple histograms together, and visualize the payment status
features for each of the last 6 months. We can pass our list of column names
pay_feats to access multiple columns to plot with the .hist() method,
specifying the bin edges we've already determined, and indicating we'd like
a 2 by 3 grid of plots. First, we set the font size small enough to fit between
these subplots. Here is the code for this:

mpl.rcParams['font.size'] = 4

df[pay_feats].hist(bins=pay_1_bins, layout=(2,3))

The plot titles have been created automatically for us based on the column
names. The y-axes are understood to be counts. The resulting visualizations
are as follows:



Figure 1.44: Grid of histogram subplots

We've already seen the first of these, and it makes sense. What about the rest
of them? Remember the definitions of the positive integer values of these
features, and what each feature means. For example, PAY_2 is the
repayment status in August, PAY_3 is the repayment status in July, and the
others go further back in time. A value of 1 means a payment delay for 1
month, while a value of 2 means a payment delay for 2 months, and so forth.

Did you notice that something doesn't seem right? Consider the values
between July (PAY_3) and August (PAY_2). In July, there are very few
accounts that had a 1-month payment delay; this bar is not really visible in
the histogram. However, in August, there are suddenly thousands of accounts
with a 2-month payment delay. This does not make sense: the number of
accounts with a 2-month delay in a given month should be less than or equal
to the number of accounts with a 1-month delay in the previous month.



Let's take a closer look at accounts with a 2-month delay in August and see
what the payment status was in July. We can do this with the following code,
using a Boolean mask and .loc, as shown in the following snippet:

df.loc[df['PAY_2']==2, ['PAY_2', 'PAY_3']].head()

The output of this should appear as follows:

Figure 1.45: Payment status in July (PAY_3) of accounts with a 2-month
payment delay in August (PAY_2)

From Figure 1.45, it's clear that accounts with a 2-month delay in August
have nonsensical values for the July payment status. The only way to
progress to a 2-month delay should be from a 1-month delay the previous
month, yet none of these accounts indicate that.

When you see something like this in the data, you need to either check the
logic in the query used to create the dataset or contact the person who gave
you the dataset. After double-checking these results, for example using
.value_counts() to view the numbers directly, we contact our client to
inquire about this issue.

The client lets us know that they had been having problems with pulling the
most recent month of data, leading to faulty reporting for accounts that had a
1-month delay in payment. In September, they had mostly fixed these
problems (although not entirely; that is why there were missing values in the
PAY_1 feature, as we found). So, in our dataset, the value of 1 is
underreported in all months except for September (the PAY_1 feature). In



theory, the client could create a query to look back into their database and
determine the correct values for PAY_2, PAY_3, and so on up to PAY_6.
However, for practical reasons, they won't be able to complete this
retrospective analysis in time for us to receive it and include it in our project.

Because of this, only the most recent month of our payment status data is
correct. This means that, of all the payment status features, only PAY_1 is
representative of future data, those that will be used to make predictions with
the model we develop. This is a key point: a predictive model relies on
getting the same kind of data to make predictions as it was built with. This
means we can use PAY_1 as a feature in our model, but not PAY_2 or the
other payment status features from previous months.

This episode shows the importance of a thorough examination of data
quality. Only by carefully combing through the data did we discover this
issue. It would have been nice if the client had told us up front that they had
been having reporting issues over the last few months, when our dataset was
collected, and that the reporting procedure was not consistent during that
time period. However, ultimately it is our responsibility to build a credible
model, so we need to be sure we believe the data is correct, by making this
kind of detailed exploration. We explain to the client that we can't use the
older features since they are not representative of the future data the model
will be scored on (that is, to make predictions on future months), and ask
them to let us know of any further data issues they are aware of. There are
none at this time.
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Activity 1.01: Exploring the Remaining Financial Features in
the Dataset

In this activity, you will examine the remaining financial features in a similar
way to how we examined PAY_1, PAY_2, PAY_3, and so on. In order to
better visualize some of this data, we'll use a mathematical function that
should be familiar: the logarithm. You'll use pandas' apply method, which
serves to apply any function to an entire column or DataFrame in the
process. Once you complete the activity, you should have the following set
of histograms of logarithmic transformations of non-zero payments:

Figure 1.46: Expected set of histograms

Perform the following steps to complete the activity:



Before beginning, set up your environment and load in the cleaned dataset
as follows:

import pandas as pd

import matplotlib.pyplot as plt #import plotting
package

#render plotting automatically

%matplotlib inline

import matplotlib as mpl #additional plotting
functionality

mpl.rcParams['figure.dpi'] = 400 #high resolution
figures

mpl.rcParams['font.size'] = 4 #font size for
figures

from scipy import stats

import numpy as np

df =
pd.read_csv('../../Data/Chapter_1_cleaned_data.cs
v')
1. Create lists of feature names for the remaining financial features.

2. Use .describe() to examine statistical summaries of the bill
amount features. Reflect on what you see. Does it make sense?

3. Visualize the bill amount features using a 2 by 3 grid of histogram
plots.

Hint: You can use 20 bins for this visualization.

4. Obtain the .describe() summary of the payment amount features.
Does it make sense?



5. Plot a histogram of the bill payment features similar to the bill amount
features, but also apply some rotation to the x-axis labels with the
xrot keyword argument so that they don't overlap. In any plotting
function, you can include the xrot=<angle> keyword argument to
rotate x-axis labels by a given angle in degrees. Consider the results.

6. Use a Boolean mask to see how much of the payment amount data is
exactly equal to 0. Does this make sense given the histogram in the
previous step?

7. Ignoring the payments of 0 using the mask you created in the previous
step, use pandas' .apply() and NumPy's np.log10() to plot
histograms of logarithmic transformations of the non-zero payments.
Consider the results.

Hint: You can use .apply() to apply any function, including log10,
to all the elements of a DataFrame or a column using the following
syntax: .apply(<function_name>).

Note

The Jupyter notebook containing the Python code and corresponding
outputs for this activity can be found here: https://packt.link/FQQOB.
Detailed step-wise solution to this activity can be found via this link.
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Summary

In this introductory chapter, we made extensive use of pandas to load and
explore the case study data. We learned how to check for basic consistency
and correctness by using a combination of statistical summaries and
visualizations. We answered such questions as "Are the unique account IDs
truly unique?", "Is there any missing data that has been given a fill value?",
and "Do the values of the features make sense given their definition?"

You may notice that we spent nearly all of this chapter identifying and
correcting issues with our dataset. This is often the most time-consuming
stage of a data science project. While it is not necessarily the most exciting
part of the job, it gives you the raw materials necessary to build exciting
models and insights. These will be the subjects of most of the rest of this
book.

Mastery of software tools and mathematical concepts is what allows you to
execute data science projects, at a technical level. However, managing your
relationships with clients, who are relying on your services to generate
insights from their data, is just as important to successful projects. You must
make as much use as you can of your business partner's understanding of
the data. They are likely going to be more familiar with it than you, unless
you are already a subject matter expert in the area. However, even in that
case, your first step should be a thorough and critical review of the data you
are using.

In our data exploration, we discovered an issue that could have undermined
our project: the data we had received was not internally consistent. Most of
the months of the payment status features were plagued by a data reporting
issue, included nonsensical values, and were not representative of the most
recent month of data, or the data that would be available to the model going
forward. We only uncovered this issue by taking a careful look at all of the
features. While this is not always possible, especially when there are very
many features, you should always take the time to spot-check as many
features as you can. If you can't examine every feature, it's useful to check a



few of every category of feature, when the features fall into categories, such
as financial or demographic features.

When discussing data issues like this with your client, make sure you are
respectful and professional. The client may simply have forgotten about the
issue when presenting you with the data. Or, they may have known about it
but assumed it wouldn't affect your analysis for some reason. In any case,
you are doing them an essential service by bringing it to their attention and
explaining why it would be a problem to use flawed data to build a model.
Be as specific as you can, presenting the kinds of graphs and tables you
used to discover the issue.

In the next chapter, we will examine the response variable for our case
study problem, which completes the initial data exploration. Then we will
start to get some hands-on experience with machine learning models and
learn how we can decide whether a model is useful or not. These skills will
be important when we start building models using the case study data.
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2. Introduction to Scikit-Learn and Model Evaluation

Overview

After exploring the response variable of the case study data, this chapter
introduces the core functionality of scikit-learn for training models and
making predictions, through simple use cases of logistic and linear
regression. Evaluation metrics for binary classification models, including
true and false positive rates, the confusion matrix, the receiver operating
characteristic (ROC) curve, and the precision-recall curve, are
demonstrated both from scratch and using convenient scikit-learn
functionality. By the end of this chapter, you'll be able to build and evaluate
binary classification models using scikit-learn.
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Introduction

In the previous chapter, you became familiar with basic Python and then
learned about the pandas tool for data exploration. Using Python and
pandas, you performed operations such as loading a dataset, verifying data
integrity, and performing exploratory analysis of the features, or
independent variables, in the data.

In this chapter, we will finish our exploration of the data by examining the
response variable. After we've concluded that the data is of high quality and
makes sense, we will be ready to move forward with developing machine
learning models. We will take our first steps with scikit-learn, one of the
most popular machine learning packages available in the Python language.
Before learning the details of how mathematical models work in the next
chapter, here we'll start to get comfortable with the syntax for using them in
scikit-learn.

We will also learn some common techniques for answering the question, "Is
this model good or not?" There are many possible ways to approach model
evaluation. For business applications, a financial analysis to determine the
value that could be created by a model is an important way to understand
the potential impact of your work. Usually, it's best to scope the business
opportunity of a project at the very beginning. However, as the emphasis of
this book is on machine learning and predictive modeling, we will
demonstrate a financial analysis in the final chapter.

There are several important model evaluation criteria that are considered
standard knowledge in data science and machine learning. We will cover a
few of the most widely used classification model performance metrics here.
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Exploring the Response Variable and Concluding the Initial
Exploration

We have now looked through all the features to see whether any data is
missing, as well as to generally examine them. The features are important
because they constitute the inputs to our machine learning algorithm. On the
other side of the model lies the output, which is a prediction of the response
variable. For our problem, this is a binary flag indicating whether or not a
credit account will default next month.

The key task for the case study project is to come up with a predictive model
for this target. Since the response variable is a yes/no flag, this problem is
called a binary classification task. In our labeled data, the samples
(accounts) that defaulted (that is, 'default payment next month'
= 1) are said to belong to the positive class, while those that didn't belong
to the negative class.

The main piece of information to examine regarding the response of a binary
classification problem is this: what is the proportion of the positive class?
This is an easy check.

Before we perform this check, we load the packages we need with the
following code:

import numpy as np #numerical computation

import pandas as pd #data wrangling

import matplotlib.pyplot as plt #plotting package

#Next line helps with rendering plots

%matplotlib inline

import matplotlib as mpl #add'l plotting
functionality



mpl.rcParams['figure.dpi'] = 400 #high res
figures

Now we load the cleaned version of the case study data like this:

df =
pd.read_csv('../../Data/Chapter_1_cleaned_data.cs
v')

Note

The cleaned dataset should have been saved as a result of your work in
Chapter 1, Data Exploration and Cleaning. The path to the cleaned data in
the preceding code snippet may be different if you saved it in a
different location.

Now, to find the proportion of the positive class, all we need to do is get the
average of the response variable over the whole dataset. This has the
interpretation of the default rate. It's also worthwhile to check the number of
samples in each class, using groupby and count in pandas. This is
presented in the following screenshot:

Figure 2.1: Class balance of the response variable

Since the target variable is 1 or 0, taking the mean of this column indicates
the fraction of accounts that defaulted: 22%. The proportion of samples in



the positive class (default = 1), also called the class fraction for this class, is
an important statistic. In binary classification, datasets are described in terms
of being balanced or imbalanced: are the proportions of the positive and
negative classes equal or not? Most machine learning classification models
are designed to work with balanced data: a 50/50 split between the classes.

However, in practice, real data is rarely balanced. Consequently, there are
several methods geared toward dealing with imbalanced data. These include
the following:

Undersampling the majority class: Randomly throwing out samples
from the majority class until the class fractions are equal, or at least less
imbalanced.

Oversampling the minority class: Randomly adding duplicate samples
of the minority class to achieve the same goal.

Weighting samples: This method is performed as part of the training
step, so the minority class collectively has as much "emphasis" as the
majority class in the trained model. The effect of this is similar to
oversampling.

More sophisticated methods, such as Synthetic Minority Over-
sampling Technique (SMOTE).

While our data is not, strictly speaking, balanced, we also note that a positive
class fraction of 22% is not particularly imbalanced, either. Some domains,
such as fraud detection, typically deal with much smaller positive class
fractions: on the order of 1% or less. This is because the proportion of "bad
actors" is quite small compared to the total population of transactions; at the
same time, it is important to be able to identify them if possible. For
problems like this, it is more likely that using a method to address class
imbalance will lead to substantially better results.

Now that we've explored the response variable, we have concluded our
initial data exploration. However, data exploration should be considered an
ongoing task that you should continually have in mind during any project.



As you create models and generate new results, it's always good to think
about what those results imply about the data, which usually requires a quick
iteration back to the exploration phase. A particularly helpful kind of
exploration, which is also typically done before model building, is
examining the relationship between features and the response. We gave a
preview of that in Chapter 1, Data Exploration and Cleaning, when we were
grouping by the EDUCATION feature and examining the mean of the
response variable. We will also do more of this later. However, this has more
to do with building a model than checking the inherent quality of the data.

The initial perusal through all the data that we have just completed is an
important foundation to lay at the beginning of a project. As you do this, you
should ask yourself the following questions:

Is the data complete?

Are there missing values or other anomalies?

Is the data consistent?

Does the distribution change over time, and if so, is this expected?

Does the data make sense?

Do the values of the features fit with their definition in the data
dictionary?

The latter two questions help you determine whether you think the data is
correct. If the answer to any of these questions is "no," this should be
addressed before continuing the project.

Also, if you think of any alternative or additional data that might be helpful
to have and is possible to get, now would be a good point in the project life
cycle to augment your dataset with it. Examples of this may include postal
code-level demographic data, which you could join to your dataset if you
had the addresses associated with accounts. We don't have these for the case



study data and have decided to proceed on this project with the data we have
now.
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Introduction to Scikit-Learn

While pandas will save you a lot of time loading, examining, and cleaning
data, the machine learning algorithms that will enable you to do predictive
modeling are located in other packages. Scikit-learn is a foundational
machine learning package for Python that contains many useful algorithms
and has also influenced the design and syntax of other machine learning
libraries in Python. For this reason, we focus on scikit-learn to develop skills
in the practice of predictive modeling. While it's impossible for any one
package to offer everything, scikit-learn comes pretty close in terms of
accommodating a wide range of classic approaches for classification,
regression, and unsupervised learning. However, it does not offer much
functionality for some more recent advancements, such as deep learning.

Here are a few other related packages you should be aware of:

SciPy:

Most of the packages we've used so far, such as NumPy and pandas, are
actually part of the SciPy ecosystem.

SciPy offers lightweight functions for classic methods such as linear
regression and linear programming.

StatsModels:

More oriented toward statistics and maybe more comfortable for users
familiar with R

Can get p-values and confidence intervals on regression coefficients

Capability for time series models such as ARIMA

XGBoost and LightGBM:



Offer a suite of state-of-the-art ensemble models that often outperform
random forests. We will learn about XGBoost in Chapter 6, Gradient
Boosting, SHAP Values, and Dealing with Missing Data.

TensorFlow, Keras, and PyTorch:

Deep learning capabilities

There are many other Python packages that may come in handy, but this
gives you an idea of what's out there.

Scikit-learn offers a wealth of different models for various tasks, but,
conveniently, the syntax for using them is consistent. In this section, we will
illustrate model syntax using a logistic regression model. Logistic
regression, despite its name, is actually a classification model. This is one of
the simplest, and therefore most important, classification models. In the next
chapter, we will go through the mathematical details of how logistic
regression works. Until then, you can simply think of it as a black box that
can learn from labeled data, then make predictions.

From the first chapter, you should be familiar with the concept of training an
algorithm on labeled data so that you can use this trained model to then
make predictions on new data. Scikit-learn encapsulates these core
functionalities in the .fit method for training models, and the .predict
method for making predictions. Because of the consistent syntax, you can
call .fit and .predict on any scikit-learn model from linear regression
to classification trees.

The first step is to choose some model, in this example a logistic regression
model, and instantiate it from the class provided by scikit-learn. In Python,
classes are templates for creating objects, which are collections of functions,
like .fit, and data, such as information learned from the model fitting
process. When you instantiate a model class from scikit-learn, you are taking
the blueprint of the model that scikit-learn makes available to you and
creating a useful object out of it. You can train this object on your data and
then save it to disk for later use. The following snippets can be used to
perform this task. The first step is to import the class:



from sklearn.linear_model import
LogisticRegression

The code to instantiate the class into an object is as follows:

my_lr = LogisticRegression()

The object is now a variable in our workspace. We can examine it using the
following code:

my_lr

This should give the following output:

LogisticRegression()

Notice that the act of creating the model object involves essentially no
knowledge of what logistic regression is or how it works. Although we didn't
select any particular options when creating the logistic regression model
object, we are now in fact using many default options for how the model is
formulated and would be trained. In effect, these are choices we have made
regarding the details of model implementation without having been aware of
it. The danger of an easy-to-use package such as scikit-learn is that it has the
potential to obscure these choices from you. However, any time you use a
machine learning model that has been prepared for you as scikit-learn
models have been, your first job is to understand all the options that are
available. A best practice in such cases is to explicitly provide every
keyword parameter to the model when you create the object. Even if you are
just selecting all the default options, this will help increase your awareness
of the choices that are being made.

We will review the interpretation of these choices later on, but for now here
is the code for instantiating a logistic regression model with all the default
options:

my_new_lr = LogisticRegression(penalty='l2',
dual=False,\



                               tol=0.0001,
C=1.0,\

                               fit_intercept=True
,\

                               intercept_scaling=
1,\

                               class_weight=None,
\

                               random_state=None,
\

                               solver='lbfgs',\

                               max_iter=100,\

                               multi_class='auto'
,\

                               verbose=0,
warm_start=False,\

                               n_jobs=None,
l1_ratio=None)

Even though the object we've created here in my_new_lr is identical to
my_lr, being explicit like this is especially helpful when you are starting
out and learning about different kinds of models. Once you're more
comfortable, you may wish to just instantiate with the default options and
make changes later as necessary. Here, we show how this may be done. The
following code sets two options and displays the current state of the model
object:

my_new_lr.C = 0.1

my_new_lr.solver = 'liblinear'

my_new_lr



This should produce the following:

Out[11]:LogisticRegression(C=0.1,
solver='liblinear')

Notice that only the options we have updated from the default values are
displayed. Here, we've taken what is called a hyperparameter of the model,
C, and updated it from its default value of 1 to 0.1. We've also specified a
solver. For now, it is enough to understand that hyperparameters are options
that you supply to the model, before fitting it to the data. These options
specify the way in which the model will be trained. Later, we will explain in
detail what all the options are and how you can effectively choose values for
them.

To illustrate the core functionality, we will fit this nearly default logistic
regression to some data. Supervised learning algorithms rely on labeled data.
That means we need both the features, customarily contained in a variable
called X, and the corresponding responses, in a variable called y. We will
borrow the first 10 samples of one feature, and the response, from our
dataset to illustrate:

X = df['EDUCATION'][0:10].values.reshape(-1,1)

X

That should show the values of the EDUCATION feature for the first 10
samples:



Figure 2.2: First 10 values of a feature

The corresponding first 10 values of the response variable can be obtained as
follows:

y = df['default payment next month'][0:10].values

y

Here is the output:

Out[13]: array([1, 1, 0, 0, 0, 0, 0, 0, 0, 0])

Here, we have selected a couple of Series (that is, columns) from our
DataFrame: the EDUCATION feature we've been discussing, and the
response variable. Then we selected the first 10 elements of each and finally
used the .values method to return NumPy arrays. Also notice that we
used the .reshape method to reshape the features. Scikit-learn expects
that the first dimension (that is, the number of rows) of the array of features
will be equal to the number of samples, so we need to make that reshaping
for X, but not for y. The –1 in the first positional argument of .reshape
means to make the output array shape flexible in that dimension, according
to how much data goes in. Since we just have a single feature in this
example, we specified the number of columns as the second argument, 1,
and let the –1 argument indicate that the array should "fill up" along the first
dimension with as many elements as necessary to accommodate the data, in
this case, 10 elements. Note that while we've extracted the data into NumPy
arrays to show how this can be done, it's also possible to use pandas Series
as direct input to scikit-learn.

Let's now use this data to fit our logistic regression. This is accomplished
with just one line:

my_new_lr.fit(X, y)

Here is the output:



Out[14]:LogisticRegression(C=0.1,
solver='liblinear')

That's all there is to it. Once the data is prepared and the model is specified,
fitting the model almost seems like an afterthought. Of course, we are
ignoring all the important options and what they mean right now. But,
technically speaking, fitting a model is very easy in terms of the code. You
can see that the output of this cell just prints the same options we've already
seen. While the fitting procedure did not return anything aside from this
output, a very important change has taken place. The my_new_lr model
object is now a trained model. We say that this change happened in place
since no new object was created; the existing object, my_new_lr, has been
modified. This is similar to modifying a DataFrame in place. We can now
use our trained model to make predictions using the features of new samples,
that the model has never "seen" before. Let's try the next 10 rows from the
EDUCATION feature.

We can select and view these features using a new variable, new_X:

new_X = df['EDUCATION']
[10:20].values.reshape(-1,1)

new_X

Figure 2.3: New features to make predictions for

Making predictions is done like this:

my_new_lr.predict(new_X)



Here is the output:

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

We can also view the true values corresponding to these predictions, since
this data is labeled:

df['default payment next month'][10:20].values

Here is the output:

Out[17]:array([0, 0, 0, 1, 0, 0, 1, 0, 0, 0])

Here, we've illustrated several things. After getting our new feature values,
we've called the .predict method on the trained model. Notice that the
only argument to this method is a set of features, that is, an "X" that we've
called new_X.

How well did our little model do? We may naively observe that since the
model predicted all 0s, and 80% of the true labels are 0s, we were right 80%
of the time, which seems pretty good. On the other hand, we entirely failed
to successfully predict any 1s. So, if those were important, we did not
actually do very well. While this is just an example to get you familiar with
how scikit-learn works, it's worth considering what a "good" prediction
might look like for this problem. We will get into the details of assessing
model predictive capabilities shortly. For now, congratulate yourself on
having gotten your hands dirty with some real data and fitting your first
machine learning model.
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Generating Synthetic Data

In the following exercise, you will walk through the model fitting process on
your own. We’ll motivate this process using a linear regression, one of the
best-known mathematical models, which should be familiar from basic
statistics. It’s also called a line of best fit. If you don’t know what it is, you
could consult a basic statistics resource, although the intent here is to
illustrate the mechanics of model fitting in sci-kit learn, as opposed to
understanding the model in detail. We’ll work on that later in the book for
other mathematical models that we’ll apply to the case study, such as logistic
regression. In order to have data to work with, you will generate your own
synthetic data. Synthetic data is a valuable learning tool for exploring
models, illustrating mathematical concepts, and for conducting thought
experiments to test various ideas. In order to make synthetic data, we will
again illustrate here how to use NumPy's random library to generate
random numbers, as well as matplotlib's scatter and plot functions to
create scatter and line plots. In the exercise, we'll use scikit-learn for the
linear regression part.

To get started, we use NumPy to make a one-dimensional array of feature
values, X, consisting of 1,000 random real numbers (in other words, not just
integers but decimals as well) between 0 and 10. We again use a seed for the
random number generator. Next, we use the .uniform method of
default_rng (random number generator), which draws from the uniform
distribution: it's equally likely to choose any number between low
(inclusive) and high (exclusive), and will return an array of whatever size
you specify. We create a one-dimensional array (that is, a vector) with 1,000
elements, then examine the first 10. All of this can be done using the
following code:

from numpy.random import default_rng

rg = default_rng(12345)

X = rg.uniform(low=0.0, high=10.0, size=(1000,))



X[0:10]

The output should appear as follows:

Figure 2.4: Creating random, uniformly distributed numbers with
NumPy
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Data for Linear Regression

Now we need a response variable. For this example, we'll generate data that
follows the assumptions of linear regression: the data will exhibit a linear
trend against the feature, but have normally distributed errors:

Figure 2.5: Linear equation with Gaussian noise

Here, a is the slope, b is the intercept, and the Gaussian noise has a mean of
µ with a standard deviation of σ. In order to write code to implement this, we
need to make a corresponding vector of responses, y, which are calculated as
the slope times the feature array, X, plus some Gaussian noise (again using
NumPy), and an intercept. The noise will be an array of 1,000 data points
with the same shape (size) as the feature array, X, where the mean of the
noise (loc) is 0 and the standard deviation (scale) is 1. This will add a
little "spread" to our linear data:

slope = 0.25

intercept = -1.25

y = slope * X + rg.normal(loc=0.0, scale=1.0,
size=(1000,))\

          + intercept

Now we'd like to visualize this data. We will use matplotlib to plot y against
the feature X as a scatter plot. First, we use .rcParams to set the resolution
(dpi = dots per inch) for a nice crisp image. Then we create the scatter plot
with plt.scatter, where X and y are the first two arguments,
respectively, and the s argument specifies a size for the dots.

This code can be used for plotting:



mpl.rcParams['figure.dpi'] = 400

plt.scatter(X,y,s=1)

plt.xlabel('X')

plt.ylabel('y')

After executing these cells, you should see something like this in your
notebook:

Figure 2.6: Plot the noisy linear relationship

Looks like some noisy linear data, just like we hoped. Now let's model it.

Note

If you're reading the print version of this book, you can download and
browse the color versions of some of the images in this chapter by visiting
the following link: https://packt.link/0dbUp.
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Exercise 2.01: Linear Regression in Scikit-Learn

In this exercise, we will take the synthetic data we just generated and determine a
line of best fit, or linear regression, using scikit-learn. The first step is to import a
linear regression model class from scikit-learn and create an object from it. The
import is similar to the LogisticRegression class we worked with
previously. As with any model class, you should observe what all the default
options are. Notice that for linear regression, there are not that many options to
specify: you will use the defaults for this exercise. The default settings include
fit_intercept=True, meaning the regression model will include an
intercept term. This is certainly appropriate since we added an intercept to the
synthetic data. Perform the following steps to complete the exercise, noting that
the code creating the data for linear regression from the preceding section must be
run first in the same notebook (as seen on GitHub):

Note

The Jupyter notebook for this exercise can be found here:
https://packt.link/IaoyM.

1. Execute this code to import the linear regression model class and instantiate
it with all the default options:

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression(fit_intercept=True,
normalize=False,\

                           copy_X=True,
n_jobs=None)

lin_reg

You should see the following output:

Out[11]:LinearRegression()

No options are displayed since we used all the defaults. Now we can fit the
model using our synthetic data, remembering to reshape the feature array (as

https://packt.link/IaoyM


we did earlier) so that that samples are along the first dimension. After fitting
the linear regression model, we examine lin_reg.intercept_, which
contains the intercept of the fitted model, as well as lin_reg.coef_,
which contains the slope.

2. Run this code to fit the model and examine the coefficients:

lin_reg.fit(X.reshape(-1,1), y)

print(lin_reg.intercept_)

print(lin_reg.coef_)

You should see this output for the intercept and slope:

-1.2522197212675905

[0.25711689]

We again see that actually fitting a model in scikit-learn, once the data is
prepared and the options for the model are decided, is a trivial process. This
is because all the algorithmic work of determining the model parameters is
abstracted away from the user. We will discuss this process later, for the
logistic regression model we'll use on the case study data.

What about the slope and intercept of our fitted model?

These numbers are fairly close to the slope and intercept we indicated when
creating the model. However, because of the random noise, they are
only approximations.

Finally, we can use the model to make predictions on feature values. Here,
we do this using the same data used to fit the model: the array of features, X.
We capture the output of this as a variable, y_pred. This is very similar to
the example shown in Figure 2.7, only here we are making predictions on
the same data used to fit the model (previously, we made predictions on
different data) and we put the output of the .predict method into a
variable.

3. Run this code to make predictions:

y_pred = lin_reg.predict(X.reshape(-1,1))



We can plot the predictions, y_pred, against feature X as a line plot over
the scatter plot of the feature and response data, like we made in Figure 2.6.
Here, we make the addition of plt.plot, which produces a line plot by
default, to plot the feature and the model-predicted response values for the
model training data. Notice that we follow the X and y data with 'r' in our
call to plt.plot. This keyword argument causes the line to be red and is
part of a shorthand syntax for plot formatting.

4. This code can be used to plot the raw data, as well as the fitted model
predictions on this data:

plt.scatter(X,y,s=1)

plt.plot(X,y_pred,'r')

plt.xlabel('X')

plt.ylabel('y')

After executing this cell, you should see something like this:

Figure 2.7: Plotting the data and the regression line

The plot looks like a line of best fit, as expected.



In this exercise, as opposed to when we called .predict with logistic
regression, we made predictions on the same data X that we used to train the
model. This is an important distinction. While here, we are seeing how the model
"fits" the same data that it was trained on, we previously examined model
predictions on new, unseen data. In machine learning, we are usually concerned
with predictive capabilities: we want models that can help us know the likely
outcomes of future scenarios. However, it turns out that model predictions on
both the training data used to fit the model and the test data, which was not
used to fit the model, are important for understanding the workings of the model.
We will formalize these notions later in Chapter 4, The Bias-Variance Trade-Off,
when we discuss the bias-variance trade-off.
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Model Performance Metrics for Binary Classification

Before we start building predictive models in earnest, we would like to
know how we can determine, once we've created a model, whether it is
"good" in some sense of the word. As you may imagine, this question has
received a lot of attention from researchers and practitioners. Consequently,
there is a wide variety of model performance metrics to choose from.

Note

For an idea of the range of options, have a look at the scikit-learn model
evaluation page: https://scikit-
learn.org/stable/modules/model_evaluation.html#model-evaluation.

When selecting a model performance metric to assess the predictive quality
of a model, it's important to keep two things in mind.

Appropriateness of the metric for the problem

Metrics are typically only defined for a specific class of problems, such as
classification or regression. For a binary classification problem, several
metrics characterize the correctness of the yes or no question that the model
answers. An additional level of detail here is how often the model is correct
for each class, the positive and negative classes. We will go into detail on
these metrics here. On the other hand, regression metrics are aimed at
measuring how close a prediction is to the target quantity. If we are trying
to predict the price of a house, how close did we come? Are we
systematically over- or under-estimating? Are we getting the more
expensive houses wrong but the cheaper ones right? There are many
possible ways to look at regression metrics.

Does the metric answer the business question?

https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation


Whatever class of problem you are working on, there will be many choices
for the metric. Which one is the right one? And even then, how do you
know if a model is "good enough" in terms of the metric? At some level,
this is a subjective question. However, we can be objective when we
consider what the goal of the model is. In a business context, typical goals
are to increase profit or reduce loss. Ultimately, you need to unify your
business question, which is often related to money in some way, and the
metric you will use to judge your model.

For example, in our credit default problem, is there a particularly high cost
associated with not correctly identifying accounts that will default? Is this
more important than potentially misclassifying some of the accounts that
won't default?

Later in the book, we'll incorporate the concept of relative costs and
benefits of correct and incorrect classifications in our problem and conduct
a financial analysis. First, we'll introduce you to the most common metrics
used to assess the predictive quality of binary classification models, the
kinds of model we need to build for our case study.
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Splitting the Data: Training and Test Sets

In the scikit-learn introduction of this chapter, we introduced the concept of
using a trained model to make predictions on new data that the model had
never "seen" before. It turns out this is a foundational concept in predictive
modeling. In our quest to create a model that has predictive capabilities, we
need some kind of measure of how well the model can make predictions on
data that were not used to fit the model. This is because in fitting a model,
the model becomes "specialized" at learning the relationship between
features and response on the specific set of labeled data that were used for
fitting. While this is nice, in the end we want to be able to use the model to
make accurate predictions on new, unseen data, for which we don't know the
true value of the labels.

For example, in our case study, once we deliver the trained model to our
client, they will then generate a new dataset of features like those we have
now, except instead of spanning the period from April to September, they
will span from May to October. And our client will be using the model with
these features, to predict whether accounts will default in November.

In order to know how well we can expect our model to predict which
accounts will actually default in November (which won't be known until
December), we can take our current dataset and reserve some of the data we
have, with known labels, from the model training process. This data is
referred to as test data and may also be called out-of-sample data since it
consists of samples that were not used in training the model. Those samples
used to train the model are called training data. The practice of holding out
a set of test data gives us an idea of how the model will perform when it is
used for its intended purpose, to make predictions on samples that were not
included during model training. In this chapter, we'll create an example
train/test split to illustrate different binary classification metrics.

We will use the convenient train_test_split functionality of scikit-
learn to split the data so that 80% will be used for training, holding 20%
back for testing. These percentages are a common way to make such a split;



in general, you want enough training data to allow the algorithm to
adequately "learn" from a representative sample of data. However, these
percentages are not set in stone. If you have a very large number of samples,
you may not need as large a percentage of training data, since you will be
able to achieve a pretty large, representative training set with a lower
percentage. We encourage you to experiment with different sizes and see the
effect. Also, be aware that every problem is different with respect to how
much data is needed to effectively train a model. There is no hard and fast
rule for sizing your training and test sets.

For our 80/20 split, we can use the code shown in the following snippet:

from sklearn.model_selection import
train_test_split

X_train, X_test, y_train, y_test =
train_test_split\

                                   (df['EDUCATION
']\

                                    .values.resha
pe(-1,1),\

                                    df['default
payment\

                                       ' next
month']\

                                    .values,
test_size=0.2,\

                                    random_state=
24)

Notice that we've set test_size to 0.2, or 20%. The size of the training
data will be automatically set to the remainder, 80%. Let's examine the
shapes of our training and test data, to see whether they are as expected, as
shown in the following output:



Figure 2.8: Shape of training and test sets

You should confirm for yourself that the number of samples (rows) in the
training and test sets is consistent with an 80/20 split.

In making the train/test split, we've also set the random_state parameter,
which is a random number seed. Using this parameter allows a consistent
train/test split across runs of this notebook. Otherwise, the random splitting
procedure would select a different 20% of the data for testing each time the
code was run.

The first argument to train_test_split is the features, in this case just
EDUCATION, and the second argument is the response. There are four
outputs: the features of the samples in the training and test sets, respectively,
and the corresponding response variables that go with these sets of features.
All this function has done is randomly select 20% of the row indices from
the dataset and subset out these features and responses as test data, leaving
the rest for training. Now that we have our training and test data, it's good to
make sure the nature of the data is the same between these sets. In particular,
is the fraction of the positive class similar? You can observe this in the
following output:



Figure 2.9: Class fractions in training and test data

The positive class fractions in the training and test data are both about 22%.
This is good, as we can say that the training set is representative of the test
set. In this case, since we have a pretty large dataset with tens of thousands
of samples, and the classes are not too imbalanced, we didn't have to take
precautions to ensure this happens.

However, you can imagine that if the dataset were smaller, and the positive
class very rare, it may be that the class fractions would be noticeably
different between the training and test sets, or worse yet, there might be no
positive samples at all in the test set. In order to guard against such
scenarios, you could use stratified sampling, with the stratify keyword
argument of train_test_split. This procedure also makes a random
split of the data into training and test sets but guarantees that the class
fractions will be equal or very similar.

Note

Out-of-time testing

If your data contains both features and responses that span a substantial
period of time, it's a good practice to try making your train/test split over
time. For example, if you have two years of data with features and responses
from every month, you may wish to try sequentially training the model on 12
months of data and testing on the next month, or the month after that,
depending on what is operationally feasible when the model will be used.
You could repeat this until you've exhausted your data, to get a few different



test scores. This will give you useful insights into model performance
because it simulates the actual conditions the model will face when it is
deployed: a model trained on old features and responses will be used to
make predictions on new data. In the case study, the responses only come
from one point in time (credit defaults within one month), so this is not an
option here.
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Classification Accuracy

Now we proceed to fit an example model to illustrate binary classification
metrics. We will continue to use logistic regression with near-default
options, choosing the same options we demonstrated in Chapter 1, Data
Exploration and Cleaning:

Figure 2.10: Loading the model class and creating a model object

Now we proceed to train the model, as you might imagine, using the labeled
data from our training set. We proceed immediately to use the trained model
to make predictions on the features of the samples from the held-out test set:

Figure 2.11: Training a model and making predictions on the test set

We've stored the model-predicted labels of the test set in a variable called
y_pred. How should we now assess the quality of these predictions? We



have the true labels, in the y_test variable. First, we will compute what is
probably the simplest of all binary classification metrics: accuracy.
Accuracy is defined as the proportion of samples that were correctly
classified.

One way to calculate accuracy is to create a logical mask that is True
whenever the predicted label is equal to the actual label, and False
otherwise. We can then take the average of this mask, which will interpret
True as 1 and False as 0, giving us the proportion of correct
classifications:

Figure 2.12: Calculating classification accuracy with a logical mask

This indicates that the model is correct 78% of the time. While this is a
pretty straightforward calculation, there are actually easier ways to calculate
accuracy using the convenience of scikit-learn. One way is to use the trained
model's .score method, passing the features of the test data to make
predictions on, as well as the test labels. This method makes the predictions
and then does the same calculation we performed previously, all in one step.
Or, we could import scikit-learn's metrics library, which includes many
model performance metrics, such as accuracy_score. For this, we pass
the true labels and the predicted labels:



Figure 2.13: Calculating classification accuracy with scikit-learn

These all give the same result, as they should. Now that we know how
accurate the model is, how do we interpret this metric? On the surface, an
accuracy of 78% may sound good. We are getting most of the predictions
right. However, an important test for the accuracy of binary classification is
to compare things to a very simple hypothetical model that only makes one
prediction: this hypothetical model predicts the majority class for every
sample, no matter what the features are. While in practice this model is
useless, it provides an important extreme case with which to compare the
accuracy of our trained model. Such extreme cases are sometimes referred to
as null models.

Think about what the accuracy of such a null model would be. In our dataset,
we know that about 22% of the samples are positive. So, the negative class is
the majority class, with the remaining 78% of the samples. Therefore, a null
model for this dataset, which always predicts the majority negative class,
will be right 78% of the time. Now when we compare our trained model here
to such a null model, it becomes clear that an accuracy of 78% is actually not
very useful. We can get the same accuracy with a model that doesn't pay any
attention to the features.

While we can interpret accuracy in terms of a majority-class null model,
there are other binary classification metrics that delve a little deeper into
how the model is performing for negative, as well as positive samples
separately.
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True Positive Rate, False Positive Rate, and Confusion
Matrix

In binary classification, there are just two labels to consider: positive and
negative. As a more descriptive way to look at model performance than the
accuracy of prediction across all samples, we can also look at the accuracy
of only those samples that have a positive label. The proportion of these that
we successfully predict as positive is called the true positive rate (TPR). If
we say that P is the number of samples in the positive class in the test data,
and TP is the number of true positives, defined as the number of positive
samples that were predicted to be positive by the model, then the TPR is
as follows:

Figure 2.14: TPR equation

The flip side of the true positive rate is the false negative rate (FNR). This
is the proportion of positive test samples that we incorrectly predicted as
negative. Such errors are called false negatives (FN) and the false negative
rate (FNR) is calculated as follows:

Figure 2.15: FNR equation

Since all the positive samples are either correctly or incorrectly predicted,
the sum of the number of true positives and the number of false negatives
equals the total number of positive samples. Mathematically, P = TP + FN,
and therefore, using the definitions of TPR and FNR, we have the following:



Figure 2.16: The relation between the TPR and FNR

Since the TPR and FNR sum to 1, it's sufficient to just calculate one of them.

Similar to the TPR and FNR, there is the true negative rate (TNR) and the
false positive rate (FPR). If N is the number of negative samples, the sum
of true negative samples (TN) is the number of these that are correctly
predicted, and the sum of false positive (FP) samples is the number
incorrectly predicted as positive:

Figure 2.17: TNR equation

Figure 2.18: FPR equation

Figure 2.19: Relation between the TNR and FPR

True and false positives and negatives can be conveniently summarized in a
table called a confusion matrix. A confusion matrix for a binary
classification problem is a 2 x 2 matrix where the true class is along one axis
and the predicted class is along the other. The confusion matrix gives a quick
summary of how many true and false positives and negatives there are:



Figure 2.20: The confusion matrix for binary classification

Since we hope to make correct classifications, we hope that the diagonal
entries (that is, the entries along a diagonal line from the top left to the
bottom right: TN and TP) of the confusion matrix are relatively large, while
the off-diagonals are relatively small, as these represent incorrect
classifications. The accuracy metric can be calculated from the confusion
matrix by adding up the entries on the diagonal, which are predictions that
are correct, and dividing by the total number of all predictions.
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Exercise 2.02: Calculating the True and False Positive and
Negative Rates and Confusion Matrix in Python

In this exercise, we'll use the test data and model predictions from the logistic
regression model we created previously, using only the EDUCATION feature. We
will illustrate how to manually calculate the true and false positive and negative
rates, as well as the numbers of true and false positives and negatives needed for
the confusion matrix. Then we will show a quick way to calculate a confusion
matrix with scikit-learn. Perform the following steps to complete the exercise,
noting that some code from the previous section must be run before doing this
exercise (as seen on GitHub):

Note

The Jupyter notebook for this exercise can be found here: https://packt.link/S02kz.

1. Run this code to calculate the number of positive samples:

P = sum(y_test)

P

The output should appear like this:

1155

Now we need the number of true positives. These are samples where the true
label is 1 and the prediction is also 1. We can identify these with a logical
mask for the samples that are positive (y_test==1) AND (& is the logical
AND operator in Python) have a positive prediction (y_pred==1).

2. Use this code to calculate the number of true positives:

TP = sum( (y_test==1) & (y_pred==1) )

TP

Here is the output:

https://packt.link/S02kz


0

The true positive rate is the proportion of true positives to positives, which
of course would be 0 here.

3. Run the following code to obtain the TPR:

TPR = TP/P

TPR

You will obtain the following output:

0.0

Similarly, we can identify the false negatives.

4. Calculate the number of false negatives with this code:

FN = sum( (y_test==1) & (y_pred==0) )

FN

This should output the following: 1155

We'd also like the FNR.

5. Calculate the FNR with this code:

FNR = FN/P

FNR

This should output the following:

1.0

What have we learned from the true positive and false negative rates?

First, we can confirm that they sum to 1. This fact is easy to see because the
TPR = 0 and the FPR = 1. What does this tell us about our model? On the
test set, at least for the positive samples, the model has in fact acted as a



majority-class null model. Every positive sample was predicted to be
negative, so none of them was correctly predicted.

6. Let's find the TNR and FPR of our test data. Since these calculations are
very similar to those we looked at previously, we show them all at once and
illustrate a new Python function:

Figure 2.21: Calculating true negative and false positive rates and
printing them

In addition to calculating the TNR and FPR in a similar way that we had
previously with the TPR and FNR, we demonstrate the print function in
Python along with the .format method for strings, which allows
substitution of variables in locations marked by curly braces {}. There is a
range of options for formatting numbers, such as including a certain number
of decimal places.

Note

For additional details, refer to
https://docs.python.org/3/tutorial/inputoutput.html.

Now, what have we learned here? In fact, our model behaves exactly like the
majority-class null model for all samples, both positive and negative. It's
clear we're going to need a better model.

https://docs.python.org/3/tutorial/inputoutput.html


While we have manually calculated all the entries of the confusion matrix in
this exercise, in scikit-learn there is a quick way to do this. Note that in
scikit-learn, the true class is along the vertical axis and the predicted class is
along the horizontal axis of the confusion matrix, as we presented earlier.

7. Create a confusion matrix in scikit-learn with this code:

metrics.confusion_matrix(y_test, y_pred)

You will obtain the following output:

Figure 2.22: The confusion matrix for our example model

All the information we need to calculate the TPR, FNR, TNR, and FPR is
contained in the confusion matrix. We also note that there are many more
classification metrics that can be derived from the confusion matrix. In fact, some
of these are actually synonyms for ones we've already examined here. For
example, the TPR is also called recall and sensitivity. Along with recall, another
metric that is often used for binary classification is precision: this is the
proportion of positive predictions that are correct (as opposed to the proportion of
positive samples that are correctly predicted). We'll get more experience with
precision in the activity for this chapter.

Note

Multiclass classification

Our case study involves a binary classification problem, with only two possible
outcomes: the account does or does not default. Another important type of
machine learning classification problem is multiclass classification. In multiclass
classification, there are several possible mutually exclusive outcomes. A classic
example is image recognition of handwritten digits; a handwritten digit should be
only one of 0, 1, 2, … 9. Although multiclass classification is outside the scope of
this book, the metrics we are learning now for binary classification can be
extended to the multiclass setting.
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Discovering Predicted Probabilities: How Does Logistic
Regression Make Predictions?

Now that we're familiar with accuracy, true and false positives and
negatives, and the confusion matrix, we can explore new ways of using
logistic regression to learn about more advanced binary classification
metrics. So far, we've only considered logistic regression as a "black box"
that can learn from labeled training data and then make binary predictions
on new features. While we will learn about the workings of logistic
regression in detail later in the book, we can begin to peek inside the black
box now.

One thing to understand about how logistic regression works is that the raw
predictions – in other words, the direct outputs from the mathematical
equation that defines logistic regression – are not binary labels. They are
actually probabilities on a scale from 0 to 1 (although, technically, the
equation never allows the probabilities to be exactly equal to 0 or 1, as we'll
see later). These probabilities are only transformed into binary predictions
through the use of a threshold. The threshold is the probability above
which a prediction is declared to be positive, and below which it is
negative. The threshold in scikit-learn is 0.5. This means any sample with a
predicted probability of at least 0.5 is identified as positive, and any with a
predicted probability < 0.5 is decided to be negative. However, we are free
to use any threshold we want. In fact, choosing the threshold is one of the
key flexibilities of logistic regression, as well as other machine learning
classification algorithms that estimate probabilities of class membership.
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Exercise 2.03: Obtaining Predicted Probabilities from a Trained
Logistic Regression Model

In the following exercise, we will get familiar with the predicted probabilities of
logistic regression and how to obtain them from a scikit-learn model.

We can begin to discover predicted probabilities by further examining the
methods available to us on the logistic regression model object that we trained
earlier in this chapter. Recall that before, once we trained the model, we could
then make binary predictions using the values of features from new samples by
passing these values to the .predict method of the trained model. These are
predictions made on the assumption of a threshold of 0.5.

However, we can directly access the predicted probabilities of these samples,
using the .predict_proba method. Perform the following steps to complete
the exercise, keeping in mind that you will need to recreate the same model
trained previously in the chapter if you are starting a new notebook:

Note

The Jupyter notebook for this exercise can be found here:
https://packt.link/yDyQn. The notebook contains the prerequisite steps of training
the model and should be executed prior to the first step shown here.

1. Obtain the predicted probabilities for the test samples using this code:

y_pred_proba = example_lr.predict_proba(X_test)

y_pred_proba

The output should be as follows:

https://packt.link/yDyQn


Figure 2.23: Predicted probabilities of the test data

We see in the output of this, which we've stored in y_pred_proba, that
there are two columns. This is because there are two classes in our
classification problem: negative and positive. Assuming the negative labels
are coded as 0 and the positives as 1, as they are in our data, scikit-learn will
report the probability of negative class membership as the first column, and
positive class membership as the second.

Since the two classes are mutually exclusive and are the only options, the
sum of predicted probabilities for the two classes should equal 1 for every
sample. Let's confirm this.

First, we can use np.sum over the first dimension (columns) to calculate
the sum of probabilities for each sample.

2. Calculate the sum of predicted probabilities for each sample with this code:

prob_sum = np.sum(y_pred_proba,1)

prob_sum

The output is as follows:

array([1., 1., 1., ..., 1., 1., 1.])

It certainly looks like all 1s. We should check to see that the result is the
same shape as the array of test data labels.

3. Check the array shape with this code:

prob_sum.shape

This should output the following:

(5333,)

Good; this is the expected shape. Now, to check that each value is 1. We use
np.unique to show all the unique elements of this array. This is similar to
DISTINCT in SQL. If all the probability sums are indeed 1, there should
only be one unique element of the probability array: 1.



4. Show all unique array elements with this code:

np.unique(prob_sum)

This should output the following:

array([1.])

After confirming our belief in the predicted probabilities, we note that since
class probabilities sum to 1, it's sufficient to just consider the second column,
the predicted probability of positive class membership. Let's capture these in
an array.

5. Run this code to put the second column of the predicted probabilities array
(predicted probability of membership in the positive class) in an array:

pos_proba = y_pred_proba[:,1]

pos_proba

The output should be as follows:

Figure 2.24: Predicted probabilities of positive class membership

What do these probabilities look like? One way to find out, and a good
diagnostic for model output, is to plot the predicted probabilities. A
histogram is a natural way to do this, for which we can use the matplotlib
function, hist(). Note that if you execute a cell with only the histogram
function, you will get the output of the NumPy histogram function returned
before the plot. This includes the number of samples in each bin and the
locations of the bin edges.

6. Execute this code to see histogram output and an unformatted plot (not
shown here):

plt.hist(pos_proba)

The output is as follows:



Figure 2.25: Details of histogram calculation

This may be useful information for you and could also be obtained directly
from the np.histogram() function. However, here we're mainly
interested in the plot, so we adjust the font size and add some axis labels.

7. Run this code for a formatted histogram plot of predicted probabilities:

mpl.rcParams['font.size'] = 12

plt.hist(pos_proba)

plt.xlabel('Predicted probability of positive
class '\

           'for test data')

plt.ylabel('Number of samples')

The plot should look like this:

Figure 2.26: Histogram plot of predicted probabilities



Notice that in the histogram of probabilities, there are only four bins that
actually have samples in them, and they are spaced fairly far apart. This is
because there are only four unique values for the EDUCATION feature,
which is the only feature in our example model.

Also, notice that all the predicted probabilities are below 0.5. This is the
reason every sample was predicted to be negative, using the 0.5 threshold.
We can imagine that if we set our threshold below 0.5, we would get
different results. For example, if we set the threshold at 0.25, all of the
samples in the smallest bin to the far right of Figure 2.26 would be classified
as positive, since the predicted probability for all of these is above 0.25. It
would be informative for us if we could see how many of these samples
actually had positive labels. Then we could see whether moving our
threshold down to 0.25 would improve the performance of our classifier by
classifying the samples in the rightmost bin as positive.

In fact, we can visualize this easily, using a stacked histogram. This will
look a lot like the histogram in Figure 2.27, except that the negative and
positive samples will be colored differently. First, we need to distinguish
between positive and negative samples in the predicted probabilities. We can
do this by indexing our array of predicted probabilities with logical masks;
first to get positive samples, where y_test == 1, and then to get negative
samples, where y_test == 0.

8. Isolate the predicted probabilities for positive and negative samples with
this code:

pos_sample_pos_proba = pos_proba[y_test==1]

neg_sample_pos_proba = pos_proba[y_test==0]

Now we want to plot these as a stacked histogram. The code is similar to the
histogram we already created, except that we will pass a list of arrays to be
plotted, which are the arrays of probabilities for positive and negative
samples we just created, and a keyword indicating we'd like the bars to be
stacked, as opposed to plotted side by side. We'll also create a legend so that
the colors are clearly identifiable on the plot.

9. Plot a stacked histogram using this code:



plt.hist([pos_sample_pos_proba,
neg_sample_pos_proba],\

          histtype='barstacked')

plt.legend(['Positive samples', 'Negative
samples'])

plt.xlabel('Predicted probability of positive
class')

plt.ylabel('Number of samples')

The plot should look like this:

Figure 2.27: Stacked histogram of predicted probabilities by class

The plot shows us the true labels of the samples for each predicted probability.
Now we can consider what the effect would be of lowering the threshold to 0.25.
Take a moment and think about what this would mean, keeping in mind that any
sample with a predicted probability at or above the threshold would be classified
as positive.

Since nearly all the samples in the small bin to the right of Figure 2.28 are
negative samples, if we were to decrease the threshold to 0.25, we would
erroneously classify these as positive samples and increase our FPR. At the same
time, we still wouldn't have managed to classify many, if any, positive samples



correctly, so our TPR wouldn't increase very much at all. Making this change
would appear to decrease the accuracy of the model.
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The Receiver Operating Characteristic (ROC) Curve

Deciding on a threshold for a classifier is a question of finding the "sweet
spot" where we are successfully recovering enough true positives, without
incurring too many false positives. As the threshold is lowered more and
more, there will be more of both. A good classifier will be able to capture
more true positives without the expense of a large number of false positives.
What would be the effect of lowering the threshold even more, with the
predicted probabilities from the previous exercise? It turns out there is a
classic method of visualization in machine learning, with a corresponding
metric that can help answer this kind of question.

The receiver operating characteristic (ROC) curve is a plot of the pairs of
TPRs (y-axis) and FPRs (x-axis) that result from lowering the threshold
down from 1 all the way to 0. You can imagine that if the threshold is 1,
there are no positive predictions since a logistic regression only predicts
probabilities strictly between 0 and 1 (endpoints not included). Since there
are no positive predictions, the TPR and the FPR are both 0, so the ROC
curve starts out at (0, 0). As the threshold is lowered, the TPR will start to
increase, hopefully faster than the FPR if it's a good classifier. Eventually,
when the threshold is lowered all the way to 0, every sample is predicted to
be positive, including all the samples that are, in fact, positive, but also all
the samples that are actually negative. This means the TPR is 1 but the FPR
is also 1. In between these two extremes are the reasonable options for where
you may want to set the threshold, depending on the relative costs and
benefits of true and false positives and negatives for the specific problem
being considered. In this way, it is possible to get a complete picture of the
performance of the classifier at all different thresholds to decide which one
to use.

We could write the code to determine the TPRs and FPRs of the ROC curve
by using the predicted probabilities and varying the threshold from 1 to 0.
Instead, we will use scikit-learn's convenient functionality, which will take
the true labels and predicted probabilities as inputs and return arrays of
TPRs, FPRs, and the thresholds that lead to them. We will then plot the



TPRs against the FPRs to show the ROC curve. Run this code to use scikit-
learn to generate the arrays of TPRs and FPRs for the ROC curve, importing
the metrics module if needed:

from sklearn import metrics

fpr, tpr, thresholds = metrics.roc_curve(y_test,
pos_proba)

Now we need to produce a plot. We'll use plt.plot, which will make a
line plot using the first argument as the x values (FPRs), the second
argument as the y values (TPRs), and the shorthand '*-' to indicate a line
plot with star symbols where the data points are located. We add a straight-
line plot from (0, 0) to (1, 1), which will appear in red ('r') and as a dashed
line ('--'). We've also given the plot a legend (which we'll explain
shortly), as well as axis labels and a title. This code produces the ROC plot:

plt.plot(fpr, tpr, '*-')

plt.plot([0, 1], [0, 1], 'r--')

plt.legend(['Logistic regression', 'Random
chance'])

plt.xlabel('FPR')

plt.ylabel('TPR')

plt.title('ROC curve')

And the plot should look like this:



Figure 2.28: ROC curve for our logistic regression, with a line of
random chance shown for comparison

What have we learned from our ROC curve? We can see that it starts at (0,0)
with a threshold high enough so that there are no positive classifications.
Then the first thing that happens, as we imagined previously when lowering
the threshold to about 0.25, is that we get an increase in the FPR, but very
little increase in the TPR. The effects of continuing to lower the threshold so
that the other bars from our stacked histogram plot in Figure 2.28 would be
included as positive classifications are shown by the subsequent points on
the line. We can see the thresholds that lead to these rates by examining the
threshold array, which is not part of the plot. View the thresholds used to
calculate the ROC curve using this code:

thresholds

The output should be as follows:

array([1.2549944 , 0.2549944 , 0.24007604,
0.22576598, 0.21207085])

Notice that the first threshold is actually above 1; practically speaking, it just
needs to be a threshold that's high enough that there are no positive
classifications.



Now consider what a "good" ROC curve would look like. As we lower the
threshold, we want to see the TPR increase, which means our classifier is
doing a good job of correctly identifying positive samples. At the same time,
ideally the FPR should not increase that much. The ROC curve of an
effective classifier would hug the upper left corner of the plot: high TPR,
low FPR. You can imagine that a perfect classifier would get a TPR of 1
(recovers all the positive samples) and an FPR of 0 and appear as a sort of
square starting at (0,0), going up to (0,1), and finishing at (1,1). While in
practice this kind of performance is highly unlikely, it gives us a limiting
case.

Further consider what the area under the curve (AUC) of such a classifier
would be, remembering integrals from calculus if you have studied it. The
AUC of a perfect classifier would be 1, because the shape of the curve
would be a square on the unit interval [0, 1].

On the other hand, the line labeled as "Random chance" in our plot is the
ROC curve that theoretically results from flipping an unbiased coin as a
classifier: it's just as likely to get a true positive as a false positive, so
lowering the threshold introduces more of each in equal proportion and the
TPR and FPR increase at the same rate. The AUC under this ROC would be
half of the perfect classifier's, as you can see graphically, and would be 0.5.

So, in general, the ROC AUC is going to be between 0.5 and 1 (although
values below 0.5 are technically possible). Values close to 0.5 indicate the
model can do little better than random chance (coin flip) as a classifier,
while values closer to 1 indicate better performance. The ROC AUC is a key
metric for the quality of a classifier and is widely used in machine learning.
The ROC AUC may also be referred to as the C-statistic (concordance
statistic).

Being such an important metric, scikit-learn has a convenient way to
calculate the ROC AUC. Let's see what the ROC AUC of the logistic
regression classifier is, where we can pass the same information that we did
to the roc_curve function. Calculate the area under the ROC curve with
this code:



metrics.roc_auc_score(y_test, pos_proba)

And observe the output:

0.5434650477972642

The ROC AUC for the logistic regression is pretty close to 0.5, meaning it's
not a very effective classifier. This may not be surprising, considering we
have expended no effort to determine which features out of the candidate
pool are actually useful at this point. We're just getting used to model fitting
syntax and learning the way to calculate model quality metrics using a
simple model containing only the EDUCATION feature. Later on, by
considering other features, hopefully we'll get a higher ROC AUC.

Note

ROC curve: How did it get that name?

During World War II, radar receiver operators were evaluated on their
ability to judge whether something that appeared on their radar screen was
in fact an enemy aircraft or not. These decisions involved the same concepts
of true and false positives and negatives that we are interested in for binary
classification. The ROC curve was devised as a way to measure the
effectiveness of operators of radar receiver equipment.
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Precision

Before embarking on the activity, we will consider the classification metric
briefly introduced previously: precision. Like the ROC curve, this
diagnostic is useful over a range of thresholds. Precision is defined as
follows:

Figure 2.29: Precision equation

Consider the interpretation of this, in the sense of varying the threshold
across the range of predicted probabilities, as we did for the ROC curve. At a
high threshold, there will be relatively few samples predicted as positive. As
we lower the threshold, more and more will be predicted as positive. Our
hope is that as we do this, the number of true positives increases more
quickly than the number of false positives, as we saw on the ROC curve.
Precision looks at the ratio of the number of true positives to the sum of true
and false positives. Think about the denominator here: what is the sum of
true and false positives?

This sum is in fact the total number of positive predictions, since all positive
predictions will be either correct or incorrect. So, precision measures the
ratio of positive predictions that are correct to all positive predictions. For
this reason, it is also called the positive predictive value. If there are very
few positive samples, precision gives a more critical assessment of the
quality of a classifier than the ROC AUC. As with the ROC curve, there is a
convenient function in scikit-learn to calculate precision, together with recall
(also known as the TPR), over a range of thresholds:
metrics.precision_recall_curve. Precision and recall are often
plotted together to assess the quality of positive predictions as far as what
fraction are correct, while at the same time considering what fraction of the
positive class a model is able to identify. We’ll plot a precision-recall curve
in the following activity.



Why might precision be a useful measure of classifier performance? Imagine
that for every positive model prediction, you are going to take some
expensive course of action, such as a time-consuming review of content that
was flagged as inappropriate by an automated procedure. False positives
would waste the valuable time of human reviewers. You would want to be
sure that you were making the right decisions on what content received a
detailed review. Precision could be a good metric to use in this situation.
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Activity 2.01: Performing Logistic Regression with a New
Feature and Creating a Precision-Recall Curve

In this activity, you'll train a logistic regression model using a feature
besides EDUCATION. Then you will graphically assess the trade-off
between precision and recall, as well as calculate the area underneath a
precision-recall curve. You will also calculate the ROC AUC on both the
training and test sets and compare them.

Perform the following steps to complete the activity:

Note

The code and the resulting output for this activity have been loaded in
a Jupyter notebook that can be found here: https://packt.link/SvAOD.

1. Use scikit-learn's train_test_split to make a new set of
training and test data. This time, instead of EDUCATION, use
LIMIT_BAL, the account's credit limit, as the feature.

2. Train a logistic regression model using the training data from your
split.

3. Create the array of predicted probabilities for the test data.

4. Calculate the ROC AUC using the predicted probabilities and the true
labels of the test data. Compare this to the ROC AUC from using the
EDUCATION feature.

5. Plot the ROC curve.

6. Calculate the data for the precision-recall curve on the test data using
scikit-learn's functionality.

https://packt.link/SvAOD


7. Plot the precision-recall curve using matplotlib.

8. Use scikit-learn to calculate the area under the precision-recall curve.
You should get a value of approximately 0.315.

9. Now recalculate the ROC AUC, except this time do it for the training
data. How is this different, conceptually and quantitatively, from your
earlier calculation?

Note

The Jupyter notebook containing the Python code solution for this
activity can be found here: https://packt.link/SvAOD. Detailed step-
wise solution to this activity can be found via this link.
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Summary

In this chapter, we finished the initial exploration of the case study data by
examining the response variable. Once we became confident in the
completeness and correctness of the dataset, we were prepared to explore
the relation between features and response and build models.

We spent much of this chapter getting used to model fitting in scikit-learn at
the technical, coding level, and learning about metrics we could use with
the binary classification problem of the case study. When trying different
feature sets and different kinds of models, you will need some way to tell if
one approach is working better than another. Consequently, you'll need to
use model performance metrics like those we learned in this chapter.

While accuracy is a familiar and intuitive metric as the percentage of
correct classifications, we learned why it may not give a useful assessment
of the performance of a classifier. We learned how to use a majority-class
null model to tell whether an accuracy rate is truly good, or no better than
what would result from simply predicting the most common class for all
samples. When the data is imbalanced, accuracy is usually not the best way
to judge a classifier.

In order to have a more nuanced view of how a model is performing, it's
necessary to separate the positive and negative classes and assess the
accuracy of them independently. From the resulting counts of true and false
positive and negative classifications, which can be summarized in a
confusion matrix, we can derive several other metrics: true and false
positive and negative rates. Combining true and false positives and
negatives with the concept of predicted probabilities and a variable
threshold of prediction, we can further characterize the usefulness of a
classifier using the ROC curve, the precision-recall curve, and the areas
under these curves.

With these tools, you are well equipped to answer general questions about
the performance of a binary classifier in any domain you may be working



in. Later in the book, we will learn about application-specific ways to assess
model performance by attaching costs and benefits to true and false
positives and negatives. Before that, starting in the next chapter, we will
begin learning the details behind what is possibly the most popular and
simplest classification model: logistic regression.
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3. Details of Logistic Regression and Feature Exploration

Overview

This chapter teaches you how to evaluate features quickly and efficiently, in
order to know which ones will probably be most important for a machine
learning model. Once we get a taste for this, we'll explore the inner
workings of logistic regression so you can continue your journey to mastery
of this fundamental technique. After reading this chapter, you will be able to
make a correlation plot of many features and a response variable and
interpret logistic regression as a linear model.
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Introduction

In the previous chapter, we developed a few example machine learning
models using scikit-learn, to get familiar with how it works. However, the
features we used, EDUCATION and LIMIT_BAL, were not chosen in a
systematic way.

In this chapter, we will start to develop techniques that can be used to assess
features for their usefulness in modeling. This will enable you to make a
quick pass over all candidate features, to have an idea of which will be the
most important. For the most promising features, we will see how to create
visual summaries that serve as useful communication tools.

Next, we will begin our detailed examination of logistic regression. We'll
learn why logistic regression is considered to be a linear model, even if the
formulation involves some non-linear functions. We'll learn what a decision
boundary is and see that as a key consequence of its linearity, the decision
boundary of logistic regression could make it difficult to accurately classify
the response variable. Along the way, we'll get more familiar with Python,
by using list comprehensions and writing functions.
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Examining the Relationships Between Features and the
Response Variable

In order to make accurate predictions of the response variable, good features
are necessary. We need features that are clearly linked to the response
variable in some way. Thus far, we've examined the relationship between a
couple of features and the response variable, either by calculating the
groupby/mean of a feature and the response variable, or using individual
features in a model and examining performance. However, we have not yet
done a systematic exploration of how all the features relate to the response
variable. We will do that now and begin to capitalize on all the hard work we
put in when we were exploring the features and making sure the data quality
was good.

A popular way of getting a quick look at how all the features relate to the
response variable, as well as how the features are related to each other, is by
using a correlation plot. We will first create a correlation plot for the case
study data, then discuss how to interpret it, along with some mathematical
details.

In order to create a correlation plot, the necessary inputs include all features
that we plan to explore, as well as the response variable. Since we are going
to use most of the column names from the DataFrame for this, a quick way
to get the appropriate list in Python is to start with all the column names and
remove those that we don't want. As a preliminary step, we start a new
notebook for this chapter and load packages and the cleaned data from
Chapter 1, Data Exploration and Cleaning, with this code:

import numpy as np #numerical computation

import pandas as pd #data wrangling

import matplotlib.pyplot as plt #plotting package

#Next line helps with rendering plots

%matplotlib inline



import matplotlib as mpl #add'l plotting
functionality

import seaborn as sns #a fancy plotting package

mpl.rcParams['figure.dpi'] = 400 #high res
figures

df =
pd.read_csv('../../Data/Chapter_1_cleaned_data.cs
v')

Note

The path to your cleaned data file may be different, depending on where you
saved it in Chapter 1, Data Exploration and Cleaning. The code and the
outputs presented in this section are also present in the reference notebook:
https://packt.link/pMvWa.

Notice that this notebook starts out in a very similar way to the previous
chapter's notebook, except we also import the Seaborn package, which has
many convenient plotting features that build on Matplotlib. Now let's make
a list of all the columns of the DataFrame and look at the first and last five:

Figure 3.1: Get a list of column names

Recall that we are not to use the gender variable due to ethical concerns,
and we learned that PAY_2, PAY_3,…, PAY_6 are incorrect and should be

https://packt.link/pMvWa


ignored. Also, we are not going to examine the one-hot encoding we created
from the EDUCATION variable, since the information from those columns is
already included in the original feature, at least in some form. We will just
use the EDUCATION feature directly. Finally, it makes no sense to use ID as
a feature, since this is simply a unique account identifier and has nothing to
do with the response variable. Let's make another list of column names that
are neither features nor the response. We want to exclude these from our
analysis:

items_to_remove = ['ID', 'SEX',\

                   'PAY_2', 'PAY_3', 'PAY_4',
'PAY_5', 'PAY_6',\

                   'EDUCATION_CAT',\

                   'graduate school', 'high
school', 'none',\

                   'others', 'university']

To have a list of column names that consists only of the features and
response we will use, we want to remove the names in
items_to_remove from the current list contained in
features_response. There are several ways to do this in Python. We
will use this opportunity to learn about a particular way of building a list in
Python, called a list comprehension. When people talk about certain
constructions as being Pythonic, or idiomatic to the Python language, list
comprehensions are often one of the things that are mentioned.

What is a list comprehension? Conceptually, it is basically the same as a
for loop. However, list comprehensions enable the creation of lists, which
may be spread across several lines in an actual for loop, to be written in
one line. They are also slightly faster than for loops, due to optimizations
within Python. While this likely won't save us much time here, this is a good
chance to become familiar with them. Here is an example list
comprehension:



Figure 3.2: Example of a list comprehension

That's all there is to it.

We can also use additional clauses to make the list comprehensions flexible.
For example, we can use them to reassign the features_response
variable with a list containing everything that's not in the list of strings we
wish to remove:

Figure 3.3: Using a list comprehension to prune down the column names

The use of if and not in within the list comprehension is fairly self-
explanatory. Easy readability in structures such as list comprehensions is one
of the reasons for the popularity of Python.

Note



The Python documentation
(https://docs.python.org/3/tutorial/datastructures.html) defines list
comprehensions as the following:

"A list comprehension consists of brackets containing an expression followed
by a for clause, then zero or more for or if clauses."

Thus, list comprehensions can enable you to do things with less code, in a
way that is usually pretty readable and understandable.
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Pearson Correlation

Now we are ready to create our correlation plot. Underlying a correlation
plot is a correlation matrix, which we must calculate first. pandas makes
this easy. We just need to select our columns of features and response values
using the list we just created and call the .corr() method on these
columns. As we calculate this, note that the type of correlation available to
us in pandas is linear correlation, also known as Pearson correlation.
Pearson correlation is used to measure the strength and direction (that is,
positive or negative) of the linear relationship between two variables:

Figure 3.4: First five rows and columns of the correlation matrix

After creating the correlation matrix, notice that the row and column names
are the same. Then, for each possible comparison between all pairs of
features, as well as all features and the response, which we can't yet see here
in the first five rows and columns, there is a number. This number is called
the correlation between these two columns. All the correlations are between
-1 and 1; a column has a correlation of 1 with itself (the diagonal of the
correlation matrix), and there is repetition: each comparison appears twice
since each column name from the original DataFrame appears as both a row
and column in the correlation matrix. Before saying more about correlation,
we'll use Seaborn to make a nice plot of it. Here is the plotting code,
followed by the output (please see the notebook on GitHub for a color figure
if you're reading in black and white; it's necessary here -
https://packt.link/pMvWa):

https://packt.link/pMvWa


sns.heatmap(corr,

            xticklabels=corr.columns.values,

            yticklabels=corr.columns.values,

            center=0)

You should see the following output:

Figure 3.5: Heatmap of the correlation plot in Seaborn

The Seaborn heatmap feature makes an obvious visualization of the
correlation matrix, according to the color scale on the right of Figure 3.5,
which is called a colorbar. Notice that when calling sns.heatmap, in
addition to the matrix, we supplied the tick labels for the x and y axes,
which are the features and response names, and indicated that the center of
the colorbar should be 0, so that positive and negative correlation are
distinguishable as red and blue, respectively.



Note

If you're reading the print version of this book, you can download and
browse the color versions of some of the images in this chapter by visiting
the following link: https://packt.link/veMmT.

What does this plot tell us? At a high level, if two features, or a feature and
the response, are highly correlated with each other, you can say there is a
strong association between them. Features that are highly correlated to the
response will be good features to use for prediction. This high correlation
could be positive or negative; we'll explain the difference shortly.

To see the correlation with the response variable, we look along the bottom
row, or equivalently, the last column. Here we see that the PAY_1 feature is
probably the most strongly correlated feature to the response variable. We
can also see that a number of features are highly correlated to each other, in
particular the BILL_AMT features. We will talk in the next chapter about the
importance of features that are correlated with each other; this is important
to know about for certain models, such as logistic regression, that make
assumptions about the correlations between features. For now, we make the
observation that PAY_1 is likely going to be one of the best, most predictive
features for our model. The other feature that looks like it may be important
is LIMIT_BAL, which is negatively correlated. Depending on how astute
your vision is, only these two really appear to be any color other than black
(meaning 0 correlation) in the bottom row of Figure 3.5.
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Mathematics of Linear Correlation

What is linear correlation, mathematically speaking? If you've taken basic
statistics, you are likely familiar with linear correlation already. Linear
correlation works very similarly to linear regression. For two columns, X and
Y, linear correlation ρ (the lowercase Greek letter "rho") is defined as the
following:

Figure 3.6: Linear correlation equation

This equation describes the expected value (E, which you can think of as the
average) of the difference between the elements of X and their average, µ ,
multiplied by the difference between the corresponding elements of Y and
their average, µ . The average for E is taken over pairs of X, Y values. You
can imagine that if, when X is relatively large compared to its mean, µ , Y
also tends to be similarly large, then the terms of the multiplication in the
numerator will both tend to be positive, leading to a positive product and
positive correlation after the expected value, E, is taken. Similarly, if Y
tends to be small when X is small, both terms in the numerator will be
negative and again lead to positive correlation. Conversely, if Y tends to
decrease as X increases, they will have negative correlation. The
denominator (the product of the standard deviations of X and Y) serves to
normalize linear correlation to the scale of [-1, 1]. Because Pearson
correlation is adjusted for the mean and standard deviation of the data, the
actual values of the data are not as important as the relationship between X
and Y. Stronger linear correlations are closer to 1 or -1. If there is no linear
relation between X and Y, the correlation will be close to 0.

It's worth noting that, while it is regularly used in this context by data
science practitioners, Pearson correlation is not strictly appropriate for a
binary response variable, as we have in the case study problem. Technically
speaking, among other restrictions, Pearson correlation is only valid for

x

y
x



continuous data, such as the data we used for our linear regression exercise
in Chapter 2, Introduction to Scikit-Learn and Model Evaluation. However,
Pearson correlation can still accomplish the purpose of giving a quick idea of
the potential usefulness of features. It is also conveniently available in
software libraries such as pandas.

In data science in general, you will find that certain widely used techniques
may be applied to data that violate their formal statistical assumptions. It is
important to be aware of the formal assumptions underlying analytical
methods. In fact, knowledge of these assumptions may be tested during
interviews for data science jobs. However, in practice, as long as a technique
can help us on our way to understanding the problem and finding an
effective solution, it can still be a valuable tool.

That being said, linear correlation will not be an effective measure of the
predictive power of all features. In particular, it only picks up on linear
relationships. Shifting our focus momentarily to a hypothetical regression
problem, have a look at the following examples and discuss what you expect
the linear correlations to be. Notice that the values of the data on the x and y
axes are not labeled; this is because the location (mean) and standard
deviation (scale) of data does not affect the Pearson correlation, only the
relationship between the variables, which can be discerned by plotting
them together:



Figure 3.7: Scatter plots of the relationship between example variables

For examples A and B, the actual Pearson correlations of these datasets are
0.96 and -0.97, respectively, according to the formula given previously.
From looking at the plots, it's pretty clear that a correlation close to 1 or -1
has provided useful insight into the relationship between these variables. For
example C, the correlation is 0.06. A correlation closer to 0 looks like an
effective indication of the lack of an association here: the value of Y doesn't
really seem to have much to do with the value of X. However, in example D,
there is clearly some relationship between the variables. But the linear
correlation is actually lower than the previous example, at 0.02. Here, X and
Y tend to "move together" over smaller scales, but this is averaged out over
all samples when the linear correlation is calculated.

Note

The code to generate the plots presented in this and the preceding section
can be found here: https://packt.link/XrUJU.

Ultimately, any summary statistic such as correlation that you may choose is
only that: a summary. It could hide important details. For this reason, it is
usually a good idea to visually examine the relationship between the features
and response. This potentially takes up a lot of space on the page, so we
won't demonstrate it here for all features in the case study. However, both
pandas and Seaborn offer functions to create what's called a scatter plot
matrix. A scatter plot matrix is similar to a correlation plot, but it actually
shows all the data as a grid of scatter plots of all features and the response
variable. This allows you to examine the data directly in a concise format.
Since this could potentially be a lot of data and plots, you may need to
downsample your data and look at a reduced number of features for the
function to run efficiently.
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F-test

While Pearson correlation is theoretically valid for continuous response
variables, the binary response variable for the case study data could be
considered categorical data, with only two categories: 0 and 1. Among the
different kinds of tests we can run, to see whether features are associated
with a categorical response, is the ANOVA F-test, available in scikit-learn
as f_classif. ANOVA stands for analysis of variance. The ANOVA F-
test can be contrasted with the regression F-test, which is very similar to
Pearson correlation, also available in scikit-learn as f_regression.

We will do an ANOVA F-test using the candidate features for the case study
data in the following exercise. You will see that the output consists of F-
statistics, as well as p-values. How can we interpret this output? We will
focus on the p-value, for reasons that will become clear in the exercise. The
p-value is a useful concept across a wide variety of statistical measures. For
instance, although we didn't examine them, each of the Pearson correlations
calculated for the preceding correlation matrix has a corresponding p-value.
There is a similar concept of a p-value corresponding to linear regression
coefficients, logistic regression coefficients, and other measures.

In the context of the F-test, the p-value answers the question: "For the
samples in the positive class, how likely is it that the average value of this
feature is the same as that of samples in the negative class?" If the data
indicated that a feature has very different average values between the
positive and negative classes, the following will be the case:

It will be very unlikely that those average values are the same (low p-
value).

It will probably be a good feature in our model because it will help us
discriminate between positive and negative classes.

Keep these points in mind during the following exercise.
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Exercise 3.01: F-test and Univariate Feature Selection

In this exercise, we'll use the F-test to examine the relationship between the
features and response variable. We will use this method to do what is called
univariate feature selection: the practice of testing features one by one against
the response variable, to see which ones have predictive power. Perform the
following steps to complete the exercise:

Note

The Jupyter notebook for this exercise can be found here:
https://packt.link/ZDPYf. This notebook also contains the prerequisite steps of
loading the cleaned data and importing the necessary libraries. These steps
should be executed before step 1 of this exercise.

1. Our first step in doing the ANOVA F-test is to separate out the features and
response as NumPy arrays, taking advantage of the list we created, as well as
integer indexing in pandas:

X = df[features_response].iloc[:,:-1].values

y = df[features_response].iloc[:,-1].values

print(X.shape, y.shape)

The output should show the shapes of the features and response:

(26664, 17) (26664, )

There are 17 features, and both the features and response arrays have the
same number of samples as expected.

2. Import the f_classif function and feed in the features and response:

from sklearn.feature_selection import f_classif

[f_stat, f_p_value] = f_classif(X, y)

There are two outputs from f_classif: the F-statistic and the p-value,
for the comparison of each feature to the response variable. Let's create a

https://packt.link/ZDPYf


new DataFrame containing the feature names and these outputs, to facilitate
our inspection. One way to specify a new DataFrame is by using a
dictionary, with key:value pairs of column names and the data to be
contained in each column. We show the DataFrame sorted (ascending) on p-
value.

3. Use this code to create a DataFrame of feature names, F-statistics, and p-
values, and show it sorted on p-value:

f_test_df =
pd.DataFrame({'Feature':features_response[:-1],

                          'F statistic':f_stat,

                          'p value':f_p_value})

f_test_df.sort_values('p value')

The output should look like this:



Figure 3.8: Results of the ANOVA F-test

Note that for every decrease in p-value, there is an increase in the F-statistic,
so the information in these columns is identical in terms of ranking features.

The conclusions we can draw from the DataFrame of F-statistics and p-
values are similar to what we observed in the correlation plot: PAY_1 and
LIMIT_BAL appear to be the most useful features. They have the smallest
p-values, indicating the average values of these features are significantly
different between the positive and negative classes, and these features will
help predict which class a sample belongs to.

In scikit-learn, measures such as the F-test help us perform univariate
feature selection. This may be helpful if you have a very large number of



features, many of which may be totally useless, and would like a quick way
to get a short list of which ones might be most useful. For example, if we
wanted to retrieve only the 20% of features with the highest F-statistics, we
could do this easily with the SelectPercentile class. Also note there is
a similar class for the selection of the top "k" features (where k is any
number you specify), called SelectKBest. Here we demonstrate how to
select the top 20%.

4. To select the top 20% of features according to the F-test, first import the
SelectPercentile class:

from sklearn.feature_selection import
SelectPercentile

5. Instantiate an object of this class, indicating we'd like to use the same feature
selection criteria, ANOVA F-test, that we've already been considering in this
exercise, and that we'd like to select the top 20% of features:

selector = SelectPercentile(f_classif,
percentile=20)

6. Use the .fit method to fit the object on our features and response data,
similar to how a model would be fit:

selector.fit(X, y)

The output should appear like this:

SelectPercentile(percentile=20)

There are several ways to access the selected features directly, which you
may learn about in the scikit-learn documentation (that is, the .transform
method, or in the same step as fitting with .fit_transform). However,
these methods will return NumPy arrays, which don't tell you the names of
the features that were selected, just the values. For that, you can use the
.get_support method of the feature selector object, which will give you
the column indices of the feature array that were selected.

7. Capture the indices of the selected features in an array named
best_feature_ix:



best_feature_ix = selector.get_support()

best_feature_ix

The output should appear as follows, indicating a logical index that can be
used with an array of feature names, as well as values, assuming they're in
the same order as the features array supplied to SelectPercentile:

array([ True, False, False, False, True, False,
False, False, False,

           False, False, True, True, False,
False, False, False])

8. The feature names can be obtained using all but the last element (the name
response variable) of our features_response list by indexing with
:-1:

features = features_response[:-1]

9. Use the index array we created in Step 7 with a list comprehension and the
features list, to find the selected feature names, as follows:

best_features = [features[counter]

                 for counter in
range(len(features))

                 if best_feature_ix[counter]]

best_features

The output should be as follows:

['LIMIT_BAL', 'PAY_1', 'PAY_AMT1', 'PAY_AMT2']

In this code, the list comprehension has looped through the number of
elements in the features array (len(features)) with the counter
loop increment, using the best_feature_ix Boolean array, representing
selected features, in the if statement to test whether each feature was
selected and capturing the name if so.



The selected features agree with the top four rows of our DataFrame of F-
test results, so the feature selection has worked as expected. While it's not
strictly necessary to do things both ways, since they both lead to the same
result, it's good to check your work, especially as you are learning new
concepts. You should be aware that with convenient methods such as
SelectPercentile, you don't get visibility of the F-statistics or p-
values. However, in some situations, it may be more convenient to use these
methods, as the p-values may not necessarily be important, outside of their
utility in ranking features.
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Finer Points of the F-test: Equivalence to the t-test for Two
Classes and Cautions

When we use an F-test to look at the difference in means between just two
groups, as we've done here for the binary classification problem of the case
study, the test we are performing actually reduces to what's called a t-test.
An F-test is extensible to three or more groups and so is useful for
multiclass classification. A t-test just compares the means between two
groups of samples, to see whether the difference in those means is
statistically significant.

While the F-test served our purposes here of univariate feature selection,
there are a few cautions to keep in mind. Going back to the concept of
formal statistical assumptions, for the F-test these include that the data is
normally distributed. We have not checked this. Also, in comparing the
same response variable, y, to many potential features from the matrix, X,
we have performed what is known in statistics as multiple comparisons. In
short, this means that by examining multiple features in comparison to the
same response over and over, the odds increase that we'll find what we
think is a "good feature" just by random chance. However, such features
may not generalize to new data. There are statistical corrections for
multiple comparisons that amount to adjusting the p-values to account for
this.

Even if we have not followed all the statistical rules that go along with
these methods, we can still get useful results from them. The multiple
comparisons correction is more of a concern when p-values are the ultimate
quantity of interest, for example, when making statistical inferences. Here,
p-values are just a means to an end of ranking the feature list. The order of
this ranking would not change if the p-values were corrected for multiple
comparisons.

In addition to knowing which features are likely to be useful for modeling,
it is good to have a deeper understanding of the important features.



Consequently, we will do a detailed graphical exploration of these in the
next exercise. We will also look at other methods for feature selection later
that don't make the same assumptions as those we've introduced here and
are more directly integrated with the predictive models that we will build.
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Hypotheses and Next Steps

According to our univariate feature exploration, the feature with the
strongest association with the response variable is PAY_1. Does this make
sense? What is the interpretation of PAY_1? PAY_1 is the payment status
of the account, in the most recent month. As we learned in the initial data
exploration, there are some values that indicate that the account was in good
standing: -2 means no account usage, -1 means balance paid in full, and 0
means at least the minimum payment was made. On the other hand, positive
integer values indicate a delay of payment by that many months. Accounts
with delayed payments last month were accounts that could be considered
in default. This means that, essentially, this feature captures historical
values of the response variable. Features such as this are extremely
important as one of the best predictors for just about any machine learning
problem is historical data on the same thing you are trying to predict (that
is, the response variable). This should make sense: people who have
defaulted before are probably at the highest risk of defaulting again.

How about LIMIT_BAL, the credit limit of accounts? Thinking about how
credit limits are assigned, it is likely that our client has assessed how risky a
borrower is when deciding their credit limit. Riskier clients should be given
lower limits, so the creditor is less exposed. Therefore, we may expect to
see a higher probability of default for accounts with lower values for
LIMIT_BAL.

What have we learned from our univariate feature selection exercise? We
have an idea of what the most important features in our model are likely to
be. And, from the correlation matrix, we have some idea of how they are
related to the response variable. However, knowing the limitations of the
tests we used, it is a good idea to visualize these features for a closer look at
the relationship between the features and response variable. We have also
started to develop hypotheses about these features: why do we think they
are important? Now, by visualizing the relationships between the features



and the response variable, we can determine whether our ideas are
compatible with what we can see in the data.

Such hypotheses and visualizations are often a key part of presenting your
results to a client, who may be interested in how a model works, not just the
fact that it does work.
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Exercise 3.02: Visualizing the Relationship Between the Features
and Response Variable

In this exercise, you will further your knowledge of plotting functions from
Matplotlib that you used earlier in this book. You'll learn how to customize
graphics to better answer specific questions with the data. As you pursue these
analyses, you will create insightful visualizations of how the PAY_1 and
LIMIT_BAL features relate to the response variable, which may possibly provide
support for the hypotheses you formed about these features. This will be done by
becoming more familiar with the Matplotlib Application Programming
Interface (API), in other words, the syntax you use to interact with Matplotlib.
Perform the following steps to complete the exercise:

Note

Before beginning step 1 of this exercise, make sure that you have imported the
necessary libraries and have loaded the correct dataframe. You can refer to the
following notebook for the prerequisite steps along with the code for this exercise:
https://packt.link/DOrZ9.

1. Calculate a baseline for the response variable of the default rate across the
whole dataset using pandas' .mean():

overall_default_rate = df['default payment next
month'].mean()

overall_default_rate

The output of this should be the following:

0.2217971797179718

What would be a good way to visualize default rates for different values of
the PAY_1 feature?

Recall our observation that this feature is sort of like a hybrid categorical
and numerical feature. We'll choose to plot it in a way that is typical for

https://packt.link/DOrZ9


categorical features, due to the relatively small number of unique values. In
Chapter 1, Data Exploration and Cleaning, we did value_counts of this
feature as part of data exploration, then later we learned about
groupby/mean when looking at the EDUCATION feature.
groupby/mean would be a good way to visualize the default rate again
here, for different payment statuses.

2. Use this code to create a groupby/mean aggregation:

group_by_pay_mean_y = df.groupby('PAY_1').agg(

{'default payment next month':np.mean})

group_by_pay_mean_y

The output should look as follows:

Figure 3.9: Mean of the response variable by groups of the PAY_1
feature

Looking at these values, you may already be able to discern the trend. Let's
go straight to plotting them. We'll take it step by step and introduce some
new concepts. You should put all the code from Steps 3 through 6 in a single
code cell.



In Matplotlib, every plot exists on an axes, and within a figure window.
By creating objects for axes and figure, you can directly access and
change their properties, including axis labels and other kinds of annotation
on the axes.

3. Create an axes object in a variable also called axes, using the following
code:

axes = plt.axes()

4. Plot the overall default rate as a red horizontal line.

Matplotlib makes this easy; you just have to indicate the y intercept of this
line with the axhline function. Notice that instead of calling this function
from plt, now we are calling it as a method on our axes object:

axes.axhline(overall_default_rate, color='red')

Now, over this line, we want to plot the default rate within each group of
PAY_1 values.

5. Use the plot method of the DataFrame of grouped data we created. Specify
to include an 'x' marker along the line plot, to not have a legend
instance, which we'll create later, and that the parent axes of this plot should
be the axes we are already working with (otherwise, pandas would erase
what was already there and create new axes):

group_by_pay_mean_y.plot(marker='x',
legend=False, ax=axes)

This is all the data we want to plot.

6. Set the y-axis label and create a legend instance (there are many possible
options for controlling the legend appearance, but a simple way is to provide
a list of strings, indicating the labels for the graphical elements in the order
they were added to the axes):

axes.set_ylabel('Proportion of credit defaults')

axes.legend(['Entire dataset', 'Groups of
PAY_1'])



7. Executing all the code from Steps 3 through 6 in a single code cell should
result in the following plot:

Figure 3.10: Credit default rates across the dataset

Our visualization of payment statuses has revealed a clear, and probably
expected, story: those who defaulted before are in fact more likely to default
again. The default rate of accounts in good standing is well below the overall
default rate, which we know from before is about 22%. However, over 30%
of the accounts that were in default last month will be in default again next
month, according to this. This is a good visual to share with our business
partner as it shows the effect of what may be one of the most important
features in our model.

Now we turn our attention to the feature ranked as having the second
strongest association with the target variable: LIMIT_BAL. This is a
numerical feature with many unique values. A good way to visualize features
such as this, for a classification problem, is to plot multiple histograms on
the same axis, with different colors for the different classes. As a way to
separate the classes, we can index them from the DataFrame using logical
arrays.

8. Use this code to create logical masks for positive and negative samples:

pos_mask = y == 1



neg_mask = y == 0

To create our dual histogram plot, we'll make another axes object, then call
the .hist method on it twice for the positive and negative class
histograms. We supply a few additional keyword arguments: the first
histogram will have black edges and white bars, while the second will use
alpha to create transparency, so we can see both histograms in the places
they overlap. Once we have the histograms, we rotate the x-axis tick labels
to make them more legible and create several other annotations that should
be self-explanatory.

9. Use the following code to create the dual histogram plot with the
aforementioned properties:

axes = plt.axes()

axes.hist(df.loc[neg_mask, 'LIMIT_BAL'],\

          edgecolor='black', color='white')

axes.hist(df.loc[pos_mask, 'LIMIT_BAL'],\

          alpha=0.5, edgecolor=None,
color='black')

axes.tick_params(axis='x', labelrotation=45)

axes.set_xlabel('Credit limit (NT$)')

axes.set_ylabel('Number of accounts')

axes.legend(['Not defaulted', 'Defaulted'])

axes.set_title('Credit limits by response
variable')

The plot should appear like this:



Figure 3.11: Dual histograms of credit limits

While this plot has accomplished all the formatting we wished to present, it's
not quite as interpretable as it could be. What we hope to gain from looking
at it is some knowledge of how the credit limit may be a good way to
distinguish between accounts that default and those that do not. However,
the primary visual takeaway here is that the transparent histogram is bigger
than the gray one. This is due to the fact that fewer accounts default than
don't default. We already know this from examining the class fractions.

It would be more informative to show something about how the shapes of
these histograms are different, not just their sizes. To emphasize this, we can
make the total plotted area of the two histograms the same, by normalizing
them. Matplotlib provides a keyword argument that makes this easy, creating
what might be considered an empirical version of a probability mass
function. This means that the integral or area contained within each
histogram will be equal to 1 after normalization, since probabilities sum to 1.

After some experimentation, we decide to make a histogram with 16 bins.
Since the maximum credit limit is NT$800,000, we use range with an
increment of NT$50,000. Here is the code that you can use:



df['LIMIT_BAL'].max()

10. Create and display the histogram bin edges with this code:

bin_edges = list(range(0,850000,50000))

print(bin_edges)

The output should be as follows:

[0, 50000, 100000, 150000, 200000, 250000,
300000, 350000, 40000, 450000,

500000, 550000, 600000, 650000, 700000, 750000,
800000]

The plotting code for the normalized histograms is similar to before, with a
few key changes: the use of the bins keyword to define bin edge locations,
density=True to normalize the histograms, and changes to the plot
annotations. The most complex part is that we need to adjust the y-axis tick
labels, so that the heights of the histogram bins have the interpretation of
proportions, which is more intuitive than the default output.

Y-axis tick labels are the text labels displayed next to the ticks on the y axis
and are usually simply the values of the ticks at those locations. However,
you are able to manually change this if you want.

Note

According to the Matplotlib documentation, for a normalized histogram, the
bin heights are calculated by "dividing the count by the number of
observations times the bin width"
(https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html). So, we need
to multiply the y-axis tick labels by the bin width of NT$50,000, for the bin
heights to represent the proportion of the total number of samples in each
bin. Notice the two lines where we get the tick locations of the y-axis, then
set the labels to a modified version. The rounding to two decimal places with
np.round is needed due to slight errors of floating-point arithmetic.

11. Run this code to produce normalized histograms:

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html


mpl.rcParams['figure.dpi'] = 400

axes = plt.axes()

axes.hist(

    df.loc[neg_mask, 'LIMIT_BAL'],

    bins=bin_edges, density=True,

    edgecolor='black', color='white')

axes.hist(

    df.loc[pos_mask, 'LIMIT_BAL'],

    bins=bin_edges, density=True, alpha=0.5,

    edgecolor=None, color='black')

axes.tick_params(axis='x', labelrotation=45)

axes.set_xlabel('Credit limit (NT$)')

axes.set_ylabel('Proportion of accounts')

y_ticks = axes.get_yticks()

axes.set_yticklabels(np.round(y_ticks*50000,2))

axes.legend(['Not defaulted', 'Defaulted'])

axes.set_title('Normalized distributions of '\

               'credit limits by response
variable')

The plot should look like this:



Figure 3.12: Normalized dual histograms

You can see that plots in Matplotlib are highly customizable. In order to view all
the different things you can get from and set on Matplotlib axes, have a look here:
https://matplotlib.org/stable/api/axes_api.html.

What can we learn from this plot? It looks like the accounts that default tend to
have a higher proportion of lower credit limits. Accounts with credit limits less
than NT$150,000 are relatively more likely to default, while the opposite is true
for accounts with limits higher than this. We should ask ourselves, does this make
sense? Our hypothesis was that the client would give riskier accounts lower
limits. This intuition is compatible with the higher proportions of defaulters with
lower credit limits that we observed here.

Depending on how the model building goes, if the features we examined in this
exercise turn out to be important for predictive modeling as we expect, it would
be good to show these graphs to our client, as part of a presentation of our work.
This would give the client insight into how the model works, as well as insights
into their data.

A key learning from this section is that effective visual presentations take
substantial time to produce. It is good to budget some time in your project

https://matplotlib.org/stable/api/axes_api.html


workflow for this. Convincing visuals are worth the effort since they should be
able to quickly and effectively communicate important findings to the client.
They are usually a better choice than adding lots of text to the materials that you
create. Visual communication of quantitative concepts is a core data science skill.
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Univariate Feature Selection: What it Does and Doesn't Do

In this chapter, we have learned techniques for going through features one
by one to see whether they have predictive power. This is a good first step,
and if you already have features that are very predictive of the outcome
variable, you may not need to spend much more time considering features
before modeling. However, there are drawbacks to univariate feature
selection. In particular, it does not consider the interactions between
features. For example, what if the credit default rate is very high
specifically for people with both a certain education level and a certain
range of credit limit?

Also, with the methods we used here, only the linear effects of features are
captured. If a feature is more predictive when it's undergone some type of
transformation, such as a polynomial or logarithmic transformation, or
binning (discretization), linear techniques of univariate feature selection
may not be effective. Interactions and transformations are examples of
feature engineering, or creating new features, in these cases from existing
features. The shortcomings of linear feature selection methods can be
remedied by non-linear modeling techniques including decision trees and
methods based on them, which we will examine later. But there is still value
in looking for simple relationships that can be found by linear methods for
univariate feature selection, and it is quick to do.
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Understanding Logistic Regression and the Sigmoid
Function Using Function Syntax in Python

In this section, we will open the "black box" of logistic regression all the
way: we will gain a comprehensive understanding of how it works. We'll
start off by introducing a new programming concept: functions. At the same
time, we'll learn about a mathematical function, the sigmoid function, which
plays a key role in logistic regression.

In the most basic sense, a function in computer programming is a piece of
code that takes inputs and produces outputs. You have been using functions
throughout the book: functions that were written by someone else. Any time
that you use syntax such as this: output =
do_something_to(input), you have used a function. For example,
NumPy has a function you can use to calculate the mean of the input:

np.mean([1, 2, 3, 4, 5])

3.0

Functions abstract away the operations being performed so that, in our
example, you don't need to see all the lines of code that it takes to calculate a
mean, every time you need to do this. For many common mathematical
functions, there are already pre-defined versions available in packages such
as NumPy. You do not need to "reinvent the wheel." The implementations in
popular packages are likely popular for a reason: people have spent time
thinking about how to create them in the most efficient way. So, it would be
wise to use them. However, since all the packages we are using are open
source, if you are interested in seeing how the functions in the libraries we
use are implemented, you are able to look at the code within any of them.

Now, for the sake of illustration, let's learn Python function syntax by
writing our own function for the arithmetic mean. Function syntax in Python
is similar to for or if blocks, in that the body of a function is indented and



the declaration of the function is followed by a colon. Here is the code for a
function to compute the mean:

def my_mean(input_argument):

    output =
sum(input_argument)/len(input_argument)

    return(output)

After you execute the code cell with this definition, the function is available
to you in other code cells in the notebook. Take the following example:

my_mean([1, 2, 3, 4, 5])

3.0

The first part of defining a function, as shown here, is to start a line of code
with def, followed by a space, followed by the name you'd like to call the
function. After this come parentheses, inside which the names of the
parameters of the function are specified. Parameters are names of the input
variables, where these names are internal to the body of the function: the
variable names defined as parameters are available within the function when
it is called (used), but not outside the function. There can be more than one
parameter; they would be comma-separated. After the parentheses comes a
colon.

The body of the function is indented and can contain any code that operates
on the inputs. Once these operations are done, the last line should start with
return and contain the output variable(s), comma-separated if there is
more than one. We are leaving out many fine points in this very simple
introduction to functions, but those are the essential parts you need to get
started.

The power of a function comes when you use it. Notice how after we define
the function, in a separate code block we can call it by the name we've given
it, and it operates on whatever inputs we pass it. It's as if we've copied and
pasted all the code to this new location. But it looks much nicer than actually



doing that. And if you are going to use the same code many times, a function
can greatly reduce the overall length of your code.

As a brief additional note, you can optionally specify the inputs using the
parameter names explicitly, which can be clearer when there are many
inputs:

my_mean(input_argument=[1, 2, 3])

2.0

Now that we're familiar with the basics of Python functions, we are going to
consider a mathematical function that's important to logistic regression,
called sigmoid. This function may also be called the logistic function. The
definition of sigmoid is as follows:

Figure 3.13: The sigmoid function

We will break down the different parts of this function. As you can see, the
sigmoid function involves the irrational number e, which is also known as
the base of the natural logarithm, in contrast to the base-10 logarithms we
used earlier for data exploration. In order to compute e  using Python, we
don't actually need to perform the exponentiation manually. NumPy has a
convenient function, exp, that takes e to the input exponent automatically.
If you look at the documentation, you will see this process is called taking
the "exponential," which sounds vague. But it is assumed to be understood
that the base of the exponent is e in this case. In general, if you want to take
an exponent in Python, such as 2  ("two to the third power"), the syntax is
two asterisks: 2**3, which equals 8, for example.

Consider how inputs may be passed to the np.exp function. Since
NumPy's implementation is vectorized, this function can take individual
numbers as well as arrays or matrices as input. To illustrate individual
arguments, we compute the exponential of 1, which shows the approximate

-X

3



value of e, as well as e0, which of course equals 1, as does the zeroth power
of any base:

np.exp(1)

2.718281828459045

np.exp(0)

1.0

To illustrate the vectorized implementation of np.exp, we create an array
of numbers using NumPy's linspace function. This function takes as
input the starting and stopping points of a range, both inclusive, and the
number of values you'd like within that range, to create an array of that many
linearly spaced values. This function performs a somewhat similar role to
Python's range, but can also produce decimal values:

Figure 3.14: Using np.linspace to make an array

Since np.exp is vectorized, it will compute the exponential of the whole
array at once, in an efficient manner. Here is the code with output, to
calculate the exponential of our X_exp array and examine the first five
values:



Figure 3.15: NumPy's exp function
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Exercise 3.03: Plotting the Sigmoid Function

In this exercise, we will use X_exp and Y_exp, created previously, to make a
plot of what the exponential function looks like over the interval [-4, 4]. You
need to have run all the code in Figures 3.14 and 3.15 to have these variables
available for this exercise. Then we will define a function for the sigmoid, create
a plot of that, and consider how it is related to the exponential function. Perform
the following steps to complete the exercise:

Note

Before beginning step 1 of this exercise, make sure that you have imported the
necessary libraries. The code for importing the libraries along with that for rest
of the steps in the exercise can be found here: https://packt.link/Uq012.

1. Use this code to plot the exponential function:

plt.plot(X_exp, Y_exp)

plt.title('Plot of $e^X$')

The plot should look like this:

https://packt.link/Uq012


Figure 3.16: Plotting the exponential function

Notice that in titling the plot, we've taken advantage of a kind of syntax
called LaTeX, which enables the formatting of mathematical notation. We
won't go into the details of LaTeX here, but suffice to say that it is very
flexible. Note that enclosing part of the title string in dollar signs causes it to
be rendered using LaTeX, and that superscript can be created using ^.

Also note in Figure 3.16 that many points spaced close together create the
appearance of a smooth curve, but in fact, it is a graph of discrete points
connected by line segments.

What can we observe about the exponential function?

It is never negative: as X approaches negative infinity, Y approaches 0.

As X increases, Y increases slowly at first, but very quickly "blows up." This
is what is meant when people say "exponential growth" to signify a rapid
increase.

How can you think about the sigmoid in terms of the exponential?

First, the sigmoid involves e , as opposed to e . The graph of e  is just the
reflection of e  about the y axis. This can be plotted easily and annotated
using curly braces for multiple-character superscript in the plot title.

2. Run this code to see the plot of e :

Y_exp = np.exp(-X_exp)

plt.plot(X_exp, Y_exp)

plt.title('Plot of $e^{-X}$')

The output should appear like this:

-X X -X
X

-X



Figure 3.17: Plot of exp(-X)

Now, in the sigmoid function, e  is in the denominator, with 1 added to it.
The numerator is 1. So, what happens to the sigmoid as X approaches
negative infinity? We know that e  "blows up," becoming very large.
Overall, the denominator becomes very large and the fraction approaches 0.
What about when X increases toward positive infinity? We can see that e
becomes very close to 0. So, in this case, the sigmoid function would be
approximately 1/1 = 1. This should give you an intuition that the sigmoid
function stays between 0 and 1. Let's now implement a sigmoid function in
Python and use it to create a plot to see how reality matches this intuition.

3. Define a sigmoid function like this:

def sigmoid(X):

    Y = 1 / (1 + np.exp(-X))

    return Y

4. Make a larger range of x values to plot over and plot the sigmoid. Use this
code:

X_sig = np.linspace(-7,7,141)

Y_sig = sigmoid(X_sig)

-X

-X

-X



plt.plot(X_sig,Y_sig)

plt.yticks(np.linspace(0,1,11))

plt.grid()

plt.title('The sigmoid function')

The plot should look like this:

Figure 3.18: A sigmoid function plot

This plot matches what we expected. Further, we can see that sigmoid(0) =
0.5. What is special about the sigmoid function? The output of this function is
strictly bounded between 0 and 1. This is a good property for a function that
should predict probabilities, which are also required to be between 0 and 1.
Technically, probabilities can be exactly equal to 0 and 1, while the sigmoid never
is. But the sigmoid can be close enough that this is not a practical limitation.

Recall that we described logistic regression as producing predicted probabilities
of class membership, as opposed to directly predicting class membership. This
enables a more flexible implementation of logistic regression, allowing the
selection of the threshold probability. The sigmoid function is the source of these
predicted probabilities. Shortly, we will see how the different features are used in
the calculation of the predicted probabilities.
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Scope of Functions

As you begin to use functions, you should develop an awareness of the
concept of scope. Notice that when we wrote the sigmoid function, we
created a variable, Y, inside the function. Variables created inside functions
are different from those created outside functions. They are effectively
created and destroyed within the function itself when it is called. These
variables are said to be local in scope: local to the function. If you have been
running all the code as written in this chapter in a single notebook in
sequence, notice that you are not able to access the Y variable after using the
sigmoid function:

Figure 3.19: The Y variable not in the scope of the notebook

The Y variable is not in the global scope of the notebook. However, global
variables created outside of functions are available within the local scope of
functions, even if they are not inputted as parameters to the function. Here
we demonstrate creating a variable outside of a function, which is global in
scope, and then accessing it within a function. The function actually doesn't
take any parameters at all, but as you can see, it can work with the value of
the global variable to create an output:



Figure 3.20: Global variable available within the local scope of the
function

Note

More details on scope

The scope of variables can potentially be confusing but is good to know
when you start making more advanced use of functions. While this
knowledge isn't required for the book, you may wish to get a more in-depth
perspective on variable scope in Python here:
https://nbviewer.jupyter.org/github/rasbt/python_reference/blob/master/tutor
ials/scope_resolution_legb_rule.ipynb.

Sigmoid curves in scientific applications

Besides being fundamental to logistic regression, sigmoid curves are used in
a variety of applications. In biology, they can be used to describe the growth
of an organism, which starts slowly, then has a rapid phase, followed by a
smooth tapering off as the final size is reached. Sigmoids can also be used to
describe population growth, which has a similar trajectory, increasing
rapidly but then slowing as the carrying capacity of the environment is
reached.
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Why Is Logistic Regression Considered a Linear Model?

We mentioned previously that logistic regression is considered a linear
model, while we were exploring whether the relationship between features
and response resembled a linear relationship. Recall that we plotted
groupby/mean of the EDUCATION feature in Chapter 1, Data
Exploration and Cleaning, as well as for the PAY_1 feature in this chapter,
to see whether the default rates across values of these features exhibited a
linear trend. While this is a good way to get a quick approximation of how
"linear or not" these features may be, here we formalize the notion of why
logistic regression is a linear model.

A model is considered linear if the transformation of features that is used to
calculate the prediction is a linear combination of the features. The
possibilities for a linear combination are that each feature can be multiplied
by a numerical constant, these terms can be added together, and an
additional constant can be added. For example, in a simple model with two
features, X  and X , a linear combination would take the following form:

Figure 3.21: Linear combination of X  and X

The constants 𝜃  can be any number, positive, negative, or zero, for i = 0, 1,
and 2 (although if a coefficient is 0, this removes a feature from the linear
combination). A familiar example of a linear transformation of one variable
is a straight line with the equation y = mx + b, as discussed Chapter 2,
Introduction to Scikit-Learn and Model Evaluation. In this case, 𝜃  = b and
𝜃  = m. 𝜃  is called the intercept of a linear combination, which should be
familiar from algebra.

What kinds of things are "not allowed" in linear transformations? Any other
mathematical expressions besides what was just described, such as the
following:

1 2

1 2

i

o
1 o



Multiplying a feature by itself; for example, X  or X . These are called
polynomial terms.

Multiplying features together; for example, X X . These are called
interactions.

Applying non-linear transformations to features; for example, log and
square root.

Other complex mathematical functions.

"If then" types of statements. For example, "if X  > a, then y = b."

However, while these transformations are not part of the basic formulation
of a linear combination, they could be added to a linear model by
engineering features, for example, defining a new feature, X  = X .

Earlier, we learned that the predictions of logistic regression, which take the
form of probabilities, are made using the sigmoid function. Taking another
look here, we see that this function is clearly non-linear:

Figure 3.22: Non-linear sigmoid function

Why, then, is logistic regression considered a linear model? It turns out that
the answer to this question lies in a different formulation of the sigmoid
equation, called the logit function. We can derive the logit function by
solving the sigmoid function for X; in other words, finding the inverse of the
sigmoid function. First, we set the sigmoid equal to p, which we interpret as
the probability of observing the positive class, then solve for X as shown in
the following:

1
2

1
3

1 2

1

3
1
2



Figure 3.23: Solving for X

Here, we've used some laws of exponents and logs to solve for X. You may
also see logit expressed as follows:

Figure 3.24: The logit function

In this expression, the probability of failure, q, is expressed in terms of the
probability of success, p; q = 1 - p, because probabilities sum to 1. Even
though in our case, credit default would probably be considered a failure in
the sense of real-world outcomes, the positive outcome (response variable =
1 in a binary problem) is conventionally considered "success" in
mathematical terminology. The logit function is also called the log odds,
because it is the natural logarithm of the odds ratio, p/q. Odds ratios may be
familiar from the world of gambling, via phrases such as "the odds are 2 to 1
that team a will defeat team b."

In general, what we've called capital X in these manipulations can stand for a
linear combination of all the features. For example, this would be X = 𝜃  +
𝜃 X  + 𝜃 X  in our simple case of two features. Logistic regression is
considered a linear model because the features included in X are, in fact,

o
1 1 2 2



only subject to a linear combination when the response variable is
considered to be the log odds. This is an alternative way of formulating the
problem, as compared to the sigmoid equation.

Putting the pieces together, the features X , X ,…, X  look like this in the
sigmoid equation version of logistic regression:

Figure 3.25: Sigmoid version of logistic regression

But they look like this in the log odds version, which is why logistic
regression is called a linear model:

Figure 3.26: Log odds version of logistic regression

Because of this way of looking at logistic regression, ideally, the features of
a logistic regression model would be linear in the log odds of the response
variable. We will see what is meant by this in the following exercise.

Logistic regression is part of a broader class of statistical models called
Generalized Linear Models (GLMs). GLMs are connected to the
fundamental concept of ordinary linear regression, which may have one
feature (that is, the line of best fit, y = mx + b, for a single feature, x) or
more than one in multiple linear regression. The mathematical connection
between GLMs and linear regression is the link function. The link function
of logistic regression is the logit function we just learned about.
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Exercise 3.04: Examining the Appropriateness of Features for
Logistic Regression

In Exercise 3.02, Visualizing the Relationship between the Features and Response
Variable, we plotted a groupby/mean of what might be the most important
feature of the model, according to our exploration so far: the PAY_1 feature. By
grouping samples by the values of PAY_1, and then looking at the mean of the
response variable, we are effectively looking at the probability, p, of default
within each of these groups.

In this exercise, we will evaluate the appropriateness of PAY_1 for logistic
regression. We will do this by examining the log odds of default within these
groups to see whether the response variable is linear in the log odds, as logistic
regression formally assumes. Perform the following steps to complete the
exercise:

Note

Before beginning step 1 of this exercise, make sure that you have imported the
necessary libraries. You can refer to the following notebook for the prerequisite
steps: https://packt.link/gtpF9.

1. Confirm you still have access to the variables from Exercise 3.02,
Visualizing the Relationship between the Features and Response Variable, in
your notebook by reviewing the DataFrame of the average value of the
response variable for different values of PAY_1 with this code:

group_by_pay_mean_y

The output should be as follows:

https://packt.link/gtpF9


Figure 3.27: Rates of default within groups of PAY_1 values as
probabilities of default

2. Extract the mean values of the response variable from these groups and put
them in a variable, p, representing the probability of default:

p = group_by_pay_mean_y['default payment next
month'].values

3. Create a probability, q, of not defaulting. Since there are only two possible
outcomes in this binary problem, and probabilities of all outcomes always
sum to 1, it is easy to calculate q. Also print the values of p and q to
confirm:

q = 1-p

print(p)

print(q)

The output should be as follows:



Figure 3.28: Calculating q from p

4. Calculate the odds ratio from p and q, as well as the log odds, using the
natural logarithm function from NumPy:

odds_ratio = p/q

log_odds = np.log(odds_ratio)

log_odds

The output should look like this:

Figure 3.29: Odds ratio and log odds

5. In order to plot the log odds against the values of the feature, we can get the
feature values from the index of the DataFrame containing groupby/mean.
You can show the index like this:

group_by_pay_mean_y.index

This should produce the following output:

Int64Index([-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8],
dtype='int64', name='PAY_1')

6. Create a similar plot to what we have already done, to show the log odds
against the values of the feature. Here is the code:



plt.plot(group_by_pay_mean_y.index, log_odds, '-
x')

plt.ylabel('Log odds of default')

plt.xlabel('Values of PAY_1')

The plot should look like this:

Figure 3.30: Log odds of default for values of PAY_1

We can see in this plot that the relationship between the log odds of the response
variable and the PAY_1 feature is not all that different from the relationship
between the rate of default and this feature that we plotted in Exercise 3.02,
Visualizing the Relationship between the Features and Response Variable. For
this reason, if the "rate of default" is a simpler concept for you to communicate to
the business partner, it may be preferable. However, in terms of understanding the
workings of logistic regression, this plot shows exactly what is assumed to be
linear.

Is a straight-line fit a good model for this data?

It certainly seems like a "line of best fit" drawn on this plot would go up from left
to right. At the same time, this data doesn't seem like it would result in a truly
linear process. One way to look at this data is that the values -2, -1, and 0 seem



like they lie in a different regime of log odds than the others. PAY_1 = 1 is sort
of intermediate, and the rest are mostly larger. It may be that engineered features
based on this variable, or different ways of encoding the categories represented
by -2, -1, and 0, would be more effective for modeling. Keep this in mind as we
proceed to model this data with logistic regression and then other approaches later
in the book.
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From Logistic Regression Coefficients to Predictions Using
Sigmoid

Before the next exercise, let's take a look at how the coefficients for logistic
regression are used to calculate predicted probabilities, and ultimately make
predictions for the class of the response variable.

Recall that logistic regression predicts the probability of class membership,
according to the sigmoid equation. In the case of two features with an
intercept, the equation is as follows:

Figure 3.31: Sigmoid function to predict the probability of class
membership for two features

When you call the .fit method of a logistic regression model object in
scikit-learn using the training data, the 𝜃 , 𝜃 , and 𝜃  parameters (intercept
and coefficients) are estimated from this labeled training data. Effectively,
scikit-learn figures out how to choose values for 𝜃 , 𝜃 , and 𝜃 , so that it will
classify as many training data points correctly as possible. We'll gain some
insight into how this process works in the next chapter.

When you call .predict, scikit-learn calculates predicted probabilities
according to the fitted parameter values and the sigmoid equation. A given
sample will then be classified as positive if p ≥ 0.5, and negative otherwise.

We know that the plot of the sigmoid equation looks like the following,
which we can connect to the equation in Figure 3.31 by making the
substitution X = 𝜃  + 𝜃 X  + 𝜃 X :

0 1 2

0 1 2

0 1 1 2 2



Figure 3.32: Predictions and true classes plotted together

Notice here that if X = 𝜃  + 𝜃 X  + 𝜃 X  ≥ 0 on the x axis, then the predicted
probability would be p ≥ 0.5 on the y axis and the sample would be classified
as positive. Otherwise, p < 0.5 and the sample would be classified as
negative. We can use this observation to calculate a linear condition for
positive prediction, in terms of the X  and X  features, using the coefficients
and intercept. Solving the inequality for positive prediction, X = 𝜃  + 𝜃 X  +
𝜃 X  ≥ 0, for X , we can obtain a linear inequality similar to a linear equation
in y = mx + b form: X  ≥ -(𝜃 /𝜃 )X  - (𝜃 /𝜃 ).

This will help to see the linear decision boundary of logistic regression in the
X -X  feature space in the following exercise.

We have now learned, from a theoretical and mathematical perspective, why
logistic regression is considered a linear model. We also examined a single
feature and considered whether the assumption of linearity was appropriate.
It is also important to understand the assumption of linearity, in terms of how
flexible and powerful we can expect logistic regression to be. We explore
this in the following exercise.

o 1 1 2 2

1 2
o 1 1

2 2 2
2 1 2 1 o 2

1 2
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Exercise 3.05: Linear Decision Boundary of Logistic Regression

In this exercise, we illustrate the concept of a decision boundary for a binary
classification problem. We use synthetic data to create a clear example of how the
decision boundary of logistic regression looks in comparison to the training
samples. We start by generating two features, X  and X , at random. Since there
are two features, we can say that the data for this problem is two-dimensional.
This makes it easy to visualize. The concepts we illustrate here generalize to
cases of more than two features, such as the real-world datasets you're likely to
see in your work; however, the decision boundary is harder to visualize in higher-
dimensional spaces.

Perform the following steps to complete the exercise:

Note

Before beginning step 1 of this exercise, make sure that you have imported the
necessary libraries. You can refer to the following notebook for the prerequisite
steps: https://packt.link/35ge1.

1. Generate the features using the following code:

from numpy.random import default_rng

rg = default_rng(4)

X_1_pos = rg.uniform(low=1, high=7, size=(20,1))

print(X_1_pos[0:3])

X_1_neg = rg.uniform(low=3, high=10, size=(20,1))

print(X_1_neg[0:3])

X_2_pos = rg.uniform(low=1, high=7, size=(20,1))

print(X_2_pos[0:3])

X_2_neg = rg.uniform(low=3, high=10, size=(20,1))

print(X_2_neg[0:3])

1 2
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You don't need to worry too much about why we selected the values we did;
the plotting we do later should make it clear. Notice, however, that we have
assigned the true class at the same time, by defining here which points (X ,
X ) will be in the positive and negative classes. The result of this is that we
have 20 samples each in the positive and negative classes, for a total of 40
samples, and that we have two features for each sample. We show the first
three values of each feature for both the positive and negative classes.

The output should be the following:

Figure 3.33: Generating synthetic data for a binary classification
problem

2. Plot this data, coloring the positive samples as red squares and the negative
samples as blue x's. The plotting code is as follows:

plt.scatter(X_1_pos, X_2_pos, color='red',
marker='s')

plt.scatter(X_1_neg, X_2_neg, color='blue',
marker='x')

plt.xlabel(‚$X_1$')

plt.ylabel(‚$X_2$')

plt.legend(['Positive class', 'Negative class'])

The result should look like this:

1

2



Figure 3.34: Generating synthetic data for a binary classification
problem

In order to use our synthetic features with scikit-learn, we need to assemble
them into a matrix. We use NumPy's block function for this, to create a 40
by 2 matrix. There will be 40 rows because there are 40 total samples, and 2
columns because there are 2 features. We will arrange things so that the
features for the positive samples come in the first 20 rows and those for the
negative samples after that.

3. Create a 40 by 2 matrix and then show the shape and the first 3 rows:

X = np.block([[X_1_pos, X_2_pos], [X_1_neg,
X_2_neg]])

print(X.shape)

print(X[0:3])

The output should be as follows:

(40, 2)

[[6.65833663 5.15531227]

[4.06796532 5.6237829 ]

[6.85746223 2.14473103]]



We also need a response variable to go with these features. We know how
we defined them, but we need an array of y values to let scikit-learn know.

4. Create a vertical stack (vstack) of 20 ones and then 20 zeros to match our
arrangement of the features and reshape to the way that scikit-learn expects.
Here is the code:

y = np.vstack((np.ones((20,1)),
np.zeros((20,1)))).reshape(40,)

print(y[0:5])

print(y[-5:])

You will obtain the following output:

[1. 1. 1. 1. 1.]

[0. 0. 0. 0. 0.]

At this point, we are ready to fit a logistic regression model to this data with
scikit-learn. We will use all of the data as training data and examine how
well a linear model is able to fit the data. The next few steps should be
familiar from your work in earlier chapters on how to instantiate a model
class and fit the model.

5. First, import the model class using the following code:

from sklearn.linear_model import
LogisticRegression

6. Now instantiate, indicating the liblinear solver, and show the model
object using the following code:

example_lr =
LogisticRegression(solver='liblinear')

example_lr

The output should be as follows:

LogisticRegression(solver='liblinear')



We'll discuss some of the different solvers available for logistic regression in
scikit-learn in Chapter 4, The Bias-Variance Trade-Off, but for now we'll use
this one.

7. Now train the model on the synthetic data:

example_lr.fit(X, y)

How do the predictions from our fitted model look?

We first need to obtain these predictions, by using the trained model's
.predict method on the same samples we used for model training. Then,
in order to add these predictions to the plot, we will create two lists of
indices to use with the arrays, according to whether the prediction is 1 or 0.
See whether you can understand how we've used a list comprehension,
including an if statement, to accomplish this.

8. Use this code to get predictions and separate them into indices of positive
and negative class predictions. Show the indices of positive class predictions
as a check:

y_pred = example_lr.predict(X)

positive_indices = [counter for counter in
range(len(y_pred))

                    if y_pred[counter]==1]

negative_indices = [counter for counter in
range(len(y_pred))

                    if y_pred[counter]==0]

positive_indices

The output should be as follows:

[2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 16, 17, 18, 19,
26, 34, 36]

From the indices of positive predictions, we can already tell that not every
sample in the training data was classified correctly: the positive samples
were the first 20 samples, but there are indices outside of that range here.



You may have already guessed that a linear decision boundary would not be
able to perfectly classify this data, based on examining it. Now let's put these
predictions on the plot, in the form of squares and circles around each data
point, colored according to positive and negative predictions, respectively:
red for positive and blue for negative.

You can compare the color and shape of the inner symbols, the true labels of
the data, to those of the outer symbols (predictions), to see which points
were classified correctly or incorrectly.

9. Here is the plotting code:

plt.scatter(X_1_pos, X_2_pos, color='red',
marker='s')

plt.scatter(X_1_neg, X_2_neg, color='blue',
marker='x')

plt.scatter(X[positive_indices,0],
X[positive_indices,1],

            s=150, marker='s',

            edgecolors='red', facecolors='none')

plt.scatter(X[negative_indices,0],
X[negative_indices,1],

            s=150, marker='o',

            edgecolors='blue', facecolors='none')

plt.xlabel('$X_1$')

plt.ylabel('$X_2$')

plt.legend(['Positive class', 'Negative class',\

            'Positive predictions', 'Negative
predictions'])

The plot should appear as follows:



Figure 3.35: Predictions and true classes plotted together

From the plot, it's apparent that the classifier struggles with data points that
are close to where you may imagine the linear decision boundary to be;
some of these may end up on the wrong side of that boundary. How might
we figure out, and visualize, the actual location of the decision boundary?
From the previous section, we know we can obtain the decision boundary of
a logistic regression, in two-dimensional feature space, using the inequality
X  ≥ -(𝜃 /𝜃 )X  - (𝜃 /𝜃 ). Since we've fitted the model here, we can retrieve
the 𝜃  and 𝜃  coefficients, as well as the 𝜃  intercept, to plug into this
equation and create the plot.

10. Use this code to get the coefficients from the fitted model and print them:

theta_1 = example_lr.coef_[0][0]

theta_2 = example_lr.coef_[0][1]

print(theta_1, theta_2)

The output should look like this:

-0.16472042583006558 -0.25675185949979507

2 1 2 1 0 2
1 2 0



11. Use this code to get the intercept:

theta_0 = example_lr.intercept_

Now use the coefficients and intercept to define the linear decision
boundary. This captures the dividing line of the inequality, X  ≥ -(𝜃 /𝜃 )X  -
(𝜃 /𝜃 ):

X_1_decision_boundary = np.array([0, 10])

X_2_decision_boundary = -
(theta_1/theta_2)*X_1_decision_boundary\

                        - (theta_0/theta_2)

To summarize the last few steps, after using the .coef_ and
.intercept_ methods to retrieve the 𝜃  and 𝜃  model coefficients and the
𝜃  intercept, we then used these to create a line defined by two points,
according to the equation we described for the decision boundary.

12. Plot the decision boundary using the following code, with some adjustments
to assign the correct labels for the legend, and to move the legend to a
location (loc) outside a plot that is getting crowded:

pos_true = plt.scatter(X_1_pos, X_2_pos,

                       color='red', marker='s',

                       label='Positive class')

neg_true = plt.scatter(X_1_neg, X_2_neg,

                       color='blue', marker='x',

                       label='Negative class')

pos_pred = plt.scatter(X[positive_indices,0],

                       X[positive_indices,1],

                       s=150, marker='s',

                       edgecolors='red',
facecolors='none',

2 1 2 1
0 2

1 2

0



                       label='Positive
predictions')

neg_pred = plt.scatter(X[negative_indices,0],

                       X[negative_indices,1],

                       s=150, marker='o',

                       edgecolors='blue',
facecolors='none',

                       label='Negative
predictions')

dec = plt.plot(X_1_decision_boundary,
X_2_decision_boundary,

               'k-', label='Decision boundary')

plt.xlabel('$X_1$')

plt.ylabel('$X_2$')

plt.legend(loc=[0.25, 1.05])

You will obtain the following plot:



Figure 3.36: True classes, predicted classes, and the decision boundary of a
logistic regression

How does the location of the decision boundary compare with where you
thought it would be?

Can you see how a linear decision boundary will never perfectly classify
this data?

As a way around this, we could create engineered features from existing features
here, such as polynomials or interactions, to allow for more complex, non-linear
decision boundaries in a logistic regression. Or, we could use non-linear models
such as random forest, which can also accomplish this, as we'll see later.

As a final note here, this example was easily visualized in two dimensions since
there are only two features. In general, the decision boundary can be described by
a hyperplane, which is the generalization of a straight line to multi-dimensional
spaces. However, the restrictive nature of the linear decision boundary is still a
factor for hyperplanes.
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Activity 3.01: Fitting a Logistic Regression Model and
Directly Using the Coefficients

In this activity, we're going to train a logistic regression model on the two
most important features we discovered in univariate feature exploration, as
well as learning how to manually implement logistic regression using
coefficients from the fitted model. This will show you how you could use
logistic regression in a computing environment where scikit-learn may not
be available, but the mathematical functions necessary to compute the
sigmoid function are. On successful completion of the activity, you should
observe that the calculated ROC AUC values using scikit-learn predictions
and those obtained from manual predictions should be the same:
approximately 0.63.

Perform the following steps to complete the activity:

1. Create a train/test split (80/20) with PAY_1 and LIMIT_BAL as
features.

2. Import LogisticRegression, with the default options, but set the
solver to 'liblinear'.

3. Train on the training data and obtain predicted classes, as well as class
probabilities, using the test data.

4. Pull out the coefficients and intercept from the trained model and
manually calculate predicted probabilities. You'll need to add a column
of ones to your features, to multiply by the intercept.

5. Using a threshold of 0.5, manually calculate predicted classes.
Compare this to the class predictions outputted by scikit-learn.

6. Calculate the ROC AUC using both scikit-learn's predicted
probabilities and your manually predicted probabilities, and compare
them.



Note

The Jupyter notebook containing the code for this activity can be found
here: https://packt.link/4FHec. This notebook contains only the Python
code and corresponding outputs. The complete step-wise solution can
be found via this link.
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Summary

In this chapter, we have learned how to explore features one at a time, using
univariate feature selection methods including Pearson correlation and an
ANOVA F-test. While looking at features in this way does not always tell
the whole story, since you are potentially missing out on important
interactions between features, it is often a helpful step. Understanding the
relationships between the most predictive features and the response
variable, and creating effective visualizations around them, is a great way to
communicate your findings to your client. We used customized plots, such
as overlapping histograms created with Matplotlib, to create visualizations
of the most important features.

Then we began an in-depth description of how logistic regression works,
exploring such topics as the sigmoid function, log odds, and the linear
decision boundary. While logistic regression is one of the simplest
classification models, and often is not as powerful as other methods, it is
one of the most widely used and is the basis for more sophisticated models
such as deep neural networks for classification. So, a detailed understanding
of logistic regression can serve you well as you explore more advanced
topics in machine learning. And, in some cases, a simple logistic regression
may be all that's needed. All other things considered, the simplest model
that satisfies the requirements is probably the best model.

If you master the materials in this and the next chapter, you will be well
prepared to use logistic regression in your work. In the next chapter, we'll
build on the fundamentals we learned here, to see how coefficients are
estimated for a logistic regression, as well as how logistic regression can be
used effectively with large numbers of features and can also be used for
feature selection.
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4. The Bias-Variance Trade-Off

Overview

In this chapter, we'll cover the remaining elements of logistic regression,
including what happens when you call .fit to train the model, and the
statistical assumptions you should be aware of when using this modeling
technique. You will learn how to use L1 and L2 regularization with
logistic regression to prevent overfitting and how to use the practice of
cross-validation to decide the regularization strength. After reading this
chapter, you will be able to use logistic regression in your work and
employ regularization in the model fitting process to take advantage of the
bias-variance trade-off and improve model performance on unseen data.
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Introduction

In this chapter, we will introduce the remaining details of logistic regression
left over from the previous chapter. In addition to being able to use scikit-
learn to fit logistic regression models, you will gain insight into the gradient
descent procedure, which is similar to the processes that are used "under the
hood" (invisible to the user) to accomplish model fitting in scikit-learn.
Finally, we'll complete our discussion of the logistic regression model by
familiarizing ourselves with the formal statistical assumptions of this
method.

We begin our exploration of the foundational machine learning concepts of
overfitting, underfitting, and the bias-variance trade-off by examining how
the logistic regression model can be extended to address the overfitting
problem. After reviewing the mathematical details of the regularization
methods that are used to alleviate overfitting, you will learn a useful
practice for tuning the hyperparameters of regularization: cross-validation.
Through the methods of regularization and some simple feature
engineering, you will gain an understanding of how to improve both
overfitted and underfitted models.

Although we are focusing on logistic regression in this chapter, the concepts
of overfitting, underfitting, regularization, and the bias-variance trade-off
are relevant to nearly all supervised modeling techniques in machine
learning.
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Estimating the Coefficients and Intercepts of Logistic
Regression

In the previous chapter, we learned that the coefficients of a logistic
regression model (each of which goes with a particular feature), as well as
the intercept, are determined using the training data when the .fit method
is called on a logistic regression model in scikit-learn. These numbers are
called the parameters of the model, and the process of finding the best
values for them is called parameter estimation. Once the parameters are
found, the logistic regression model is essentially a finished product: with
just these numbers, we can use a logistic regression model in any
environment where we can perform common mathematical functions.

It is clear that the process of parameter estimation is important, since this is
how we can make a predictive model from our data. So, how does parameter
estimation work? To understand this, the first step is to familiarize ourselves
with the concept of a cost function. A cost function is a way of telling how
far away the model predictions are from perfectly describing the data. The
larger the difference between the model predictions and the actual data, then
the larger the "cost" returned by the cost function.

This is a straightforward concept for regression problems: the difference
between predictions and true values can be used for the cost, after going
through a transformation (such as absolute value or squaring) to make the
value of the cost positive, and then averaging this over all the training
samples.

For classification problems, especially in fitting logistic regression models, a
typical cost function is the log-loss function, also called cross-entropy loss.
This is the cost function that scikit-learn uses, in a modified form, to fit
logistic regression:



Figure 4.1: The log-loss function

Here, there are n training samples, y is the true label (0 or 1) of the i
sample, p  is the predicted probability that the label of the i  sample equals
1, and log is the natural logarithm. The summation notation (that is, the
uppercase Greek letter, sigma) over all the training samples and division by
n serve to take the average of this cost function over all training samples.
With this in mind, take a look at the following graph of the natural logarithm
function and consider what the interpretation of this cost function is:

Figure 4.2: Natural logarithm on the interval (0, 1)

To see how the log-loss cost function works, consider its value for a sample
where the true label is 1, which is y = 1 in this case, so the second part of the
cost function, (1 - y )log(1 - p ), will be exactly equal to 0 and will not affect
the value. Then the value of the cost function is -y log(p ) = -log(p ) since y
= 1. So, the cost for this sample is simply the negative of the natural
logarithm of the predicted probability. Now since the true label for the
sample is 1, consider how the cost function should behave. We expect that
for predicted probabilities that are close to 1, the cost function will be small,

i 
th

i
th

i i
i i i i



representing a small error for predictions that are closer to the true value. For
predictions that are closer to 0, it will be larger, since the cost function is
supposed to take on larger values the more "wrong" the prediction is.

From the graph of the natural logarithm in Figure 4.2 we can see that for
values of p that are closer to 0, the natural logarithm takes on increasingly
negative values. This means the cost function will take on increasingly
positive values, so that the cost of classifying a positive sample with a very
low probability is relatively high, as it should be. Conversely, if the
predicted probability is closer to 1, then the graph indicates the cost will be
closer to 0 – again, this is as expected for a prediction that is "more correct."
Therefore, the cost function behaves as expected for a positive sample. A
similar observation can be made for samples where the true label is 0.

Now we understand how the log-loss cost function works for logistic
regression. But what does this have to do with how the coefficients and the
intercept are determined? We will learn in the next section.

Note

The code for generating the plots presented in this section can be found
here: https://packt.link/NeF8P.
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Gradient Descent to Find Optimal Parameter Values

The problem of finding the parameter values (coefficients and intercept) for
a logistic regression model using a log-loss cost boils down to a problem of
optimization: we would like to find the set of parameters that results in the
minimum cost, since costs are higher for worse predictions. In other words,
we want the set of parameters that is the "least wrong" on average over all of
the training samples. This process is done for you automatically by the
.fit method of the logistic regression model in scikit-learn. There are
different solution techniques for finding the set of parameters with the
lowest cost, and you can choose which one you would like to use with the
solver keyword when you are instantiating the model class. All of these
methods work somewhat differently. However, they are all based on the
concept of gradient descent.

The gradient descent process starts with an initial guess. The choice of the
initial guess is not that important for logistic regression and you don't need
to make it manually; this is handled by the solver keyword. However, for
more advanced machine learning algorithms such as deep neural networks,
selection of the initial guesses for parameters requires more attention.

For the sake of illustration, we will consider a problem where there is only
one parameter to estimate. We'll look at the value of a hypothetical cost
function (y = f(x) = x  – 2x) and devise a gradient descent procedure to find
the value of the parameter, x, for which the cost, y, is the lowest. Here, we
choose some x values, create a function that returns the value of the cost
function, and look at the value of the cost function over this range of
parameters.

The code to do this is as follows:

X_poly = np.linspace(-3,5,81)

print(X_poly[:5], '...', X_poly[-5:])

Here is the output of the print statement:

2



[-3. -2.9 -2.8 -2.7 -2.6] ... [4.6 4.7 4.8 4.9 5.
]

The remaining code snippet is as follows:

def cost_function(X):

    return X * (X-2)

y_poly = cost_function(X_poly)

plt.plot(X_poly, y_poly)

plt.xlabel('Parameter value')

plt.ylabel('Cost function')

plt.title('Error surface')

The resulting plot should appear as follows:

Figure 4.3: A cost function plot



Note

In the preceding code snippets, we assume that you would have imported the
necessary libraries. You can refer to the following notebook for the complete
code for the chapter including the import statement for the preceding
snippets: https://packt.link/A4VyF.

Looking at the error surface in Figure 4.3, which is the plot of the cost
function over a range of parameter values, it's pretty evident what parameter
value will result in the lowest value of the cost function: x = 1. In fact, with
some calculus, you could easily confirm this by setting the derivative to zero
and then solving for x, confirming that x = 1 is the minimum. However,
generally speaking, it is not always feasible to solve the problem so simply.
In cases where it is necessary to use gradient descent, we don't always know
how the entire error surface looks. Rather, after we've chosen the initial
guess for the parameter, all we're able to know is the direction of the error
surface in the immediate vicinity of that point.

Gradient descent is an iterative algorithm; starting from the initial guess,
we try to find a new guess that lowers the cost function and continue with
this until we've found a good solution. We are trying to move "downhill" on
the error surface, but we only know which direction to move in and how far
to move in that direction, based on the shape of the error surface in the
immediate neighborhood of our current guess. In mathematical terms, we
only know the value of the derivative (which is called the gradient in more
than one dimension) at the parameter value of the current guess. If you have
not studied calculus, you can think of the gradient as telling you which
direction is downhill, and how steep the hill is from where you're standing.
We use this information to "take a step" in the direction of decreasing error.
How big a step we decide to take depends on the learning rate. Since the
gradient declines toward the direction of decreasing error, we want to take a
step in the direction that is the negative of the gradient.

These notions can be formalized in the following equation. To get to the new
guess, x , from the current guess, x , where f'(x ) is the derivative (that
is, the gradient) of the cost function at the current guess:

new old old
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Figure 4.4: Equation to obtain the new guess from the current guess

In the following graph, we can see the results of starting a gradient descent
procedure from x = 4.5, with a learning rate of 0.75, and then optimizing x to
attain the lowest value of the cost function:

Figure 4.5: The gradient descent path

Gradient descent also works in higher-dimensional spaces; in other words,
with more than one parameter. However, you can only visualize up to a two-
dimensional error surface (that is, two parameters at a time on a three-
dimensional plot) on a single graph.

Having described the workings of gradient descent, let's perform an exercise
to implement the gradient descent algorithm, expanding on the example of
this section.



Note

The code for generating the plots presented in this section can be found
here: https://packt.link/NeF8P. If you're reading the print version of this
book, you can download and browse the color versions of some of the
images in this chapter by visiting the following link:
https://packt.link/FAXBM
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Exercise 4.01: Using Gradient Descent to Minimize a Cost
Function

In this exercise, our task is to find the best set of parameters in order to minimize
the following hypothetical cost function: y = f(x) = x  – 2x. To do this, we will
employ gradient descent, which was described in the preceding section. Perform
the following steps to complete the exercise:

Note

Before you begin this exercise, please make sure you have executed the
prerequisite steps of importing the necessary libraries and loading the cleaned
dataframe. These steps along with the code for this exercise can be found at
https://packt.link/NeF8P.

1. Create a function that returns the value of the cost function and look at the
value of the cost function over a range of parameters. You can use the
following code to do this (note that this repeats code from the preceding
section):

X_poly = np.linspace(-3,5,81)

print(X_poly[:5], '...', X_poly[-5:])

def cost_function(X):

    return X * (X-2)

y_poly = cost_function(X_poly)

plt.plot(X_poly, y_poly)

plt.xlabel('Parameter value')

plt.ylabel('Cost function')

plt.title('Error surface')

You will obtain the following plot of the cost function:

2
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Figure 4.6: A cost function plot

2. Create a function for the value of the gradient. This is the analytical
derivative of the cost function. Use this function to evaluate the gradient at
the point x = 4.5, and then use this in combination with the learning rate to
find the next step of the gradient descent process:

def gradient(X):

    return (2*X) - 2

x_start = 4.5

learning_rate = 0.75

x_next = x_start -
gradient(x_start)*learning_rate

x_next

Note



It doesn't matter if you haven't studied calculus and don't understand this
part; you can just take it as a given that this is the function for the gradient.
In some applications, it's not actually possible to calculate an analytical
derivative, so this may need to be numerically approximated.

After running the cell with x_next, you will obtain the following output:

-0.75

This is the next gradient descent step after x = 4.5.

3. Plot the gradient descent path, from the starting point to the next point, using
the following code:

plt.plot(X_poly, y_poly)

plt.plot([x_start, x_next],

         [cost_function(x_start),
cost_function(x_next)],

         '-o')

plt.xlabel('Parameter value')

plt.ylabel('Cost function')

plt.legend(['Error surface', 'Gradient descent
path'])

You will obtain the following output:



Figure 4.7: The first gradient descent path step

Here, it appears as though we've taken a step in the right direction. However,
it's clear that we've overshot where we want to be. It may be that our
learning rate is too large, and consequently, we are taking steps that are too
big. While tuning the learning rate will be a good way to converge toward an
optimal solution more quickly, in this example, we can just continue
illustrating the remainder of the process. Here, it looks like we may need to
take a few more steps. In practice, gradient descent continues until the size
of the steps become very small, or the change in the cost function becomes
very small (you can specify how small by using the tol argument in the
scikit-learn logistic regression), indicating that we're close enough to a good
solution – that is, a local minimum of the cost function. For this example,
we'll just take a total of 14 steps, or iterations, beyond the initial guess (note
that you can also set the maximum number of iterations in scikit-learn with
max_iter).

4. Perform 14 iterations to converge toward the local minimum of the cost
function by using the following code snippet (note that iterations =
15, but the endpoint is not included in the call to range()):

iterations = 15



x_path = np.empty(iterations,)

x_path[0] = x_start

for iteration_count in range(1,iterations):

    derivative = gradient(x_path[iteration_count-
1])

    x_path[iteration_count] =
x_path[iteration_count-1] \

                              -
(derivative*learning_rate)

x_path

You will obtain the following output:

array([ 4.5 , -0.75 , 1.875 , 0.5625 , 1.21875 ,

        0.890625 , 1.0546875 , 0.97265625,
1.01367188, 0.99316406,

        1.00341797, 0.99829102, 1.00085449,
0.99957275, 1.00021362])

This for loop stores the successive estimates in the x_path array, using
the current estimate to calculate the derivative and find the next estimate.
From the resulting values of the gradient descent process, it looks like we've
gotten very close (1.00021362) to the optimal solution of 1.

5. Plot the gradient descent path using the following code:

plt.plot(X_poly, y_poly)

plt.plot(x_path, cost_function(x_path), '-o')

plt.xlabel('Parameter value')

plt.ylabel('Cost function')

plt.legend(['Error surface', 'Gradient descent
path'])



You will obtain the following output:

Figure 4.8: The gradient descent path

We encourage you to repeat the previous procedure with different learning rates
in order to see how they affect the gradient descent path. With the right learning
rate, it's possible to converge on a highly accurate solution very quickly. While
the choice of learning rate can be important in different machine learning
applications, for logistic regression, the problem is usually pretty easy to solve
and you don't need to select a learning rate in scikit-learn.

As you experimented with different learning rates, did you notice what happened
when the learning rate was greater than one? In this case, the step that we take in
the direction of the decreasing error is too large and we actually wind up with a
higher error. This problem can compound itself and actually lead the gradient
descent process away from the region of minimum error. On the other hand, if the
step size is too small, it can take a very long time to find the desired solution.
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Assumptions of Logistic Regression

Since it is a classical statistical model, similar to the F-test and Pearson
correlation we already examined, logistic regression makes certain
assumptions about the data. While it's not necessary to follow every one of
these assumptions in the strictest possible sense, it's good to be aware of
them. That way, if a logistic regression model is not performing very well,
you can try to investigate and figure out why, using your knowledge of the
ideal situation that logistic regression is intended for. You may find slightly
different lists of the specific assumptions from different resources. However,
those that are listed here are widely accepted.

Features Are Linear in the Log Odds

We learned about this assumption in the previous chapter, Chapter 3, Details
of Logistic Regression and Feature Exploration. Logistic regression is a
linear model, so it will only work well as long as the features are effective at
describing a linear trend in the log odds. In particular, logistic regression
won't capture interactions, polynomial features, or the discretization of
features, on its own. You can, however, specify all of these as "new features"
– even though they may be engineered from existing features.

Remember from the previous chapter that the most important feature from
univariate feature exploration, PAY_1, was not found to be linear in the log
odds.

No Multicollinearity of Features

Multicollinearity means that features are correlated with each other. The
worst violation of this assumption is when features are perfectly correlated
with each other, such as one feature being identical to another, or when one
feature equals another multiplied by a constant. We can investigate the
correlation of features using the correlation plot that we're already familiar
with from univariate feature selection. Here is the correlation plot from the
previous chapter:



Figure 4.9: A correlation plot of features and the response

We can see from the correlation plot what perfect correlation looks like:
since every feature and the response variable has a correlation of 1 with
itself, we can see that a correlation of 1 is a light, cream color. From the
color bar, which doesn't include -1, we know there are no correlations with
that value.

Note

The Jupyter notebook containing the code and the corresponding plots
presented in this section can be found here: https://packt.link/UOEMp.

https://packt.link/UOEMp


The clearest examples of correlated predictors in our case study data are the
BILL_AMT features. It makes intuitive sense that bills might be similar from
month to month for a given account. For instance, there may be an account
that typically carries a balance of zero, or an account that has a large balance
that is taking a while to pay off. Are any of the BILL_AMT features
perfectly correlated? From Figure 4.9, it does not look like it. So, while
these features may not contribute much independent information, we won't
remove them at this point out of concern for multicollinearity.

The Independence of Observations

This is a common assumption in classical statistical models, including linear
regression. Here, the observations (or samples) are assumed to be
independent. Does this make sense with the case study data? We'd want to
confirm with our client whether the same individual can hold multiple credit
accounts across the dataset and consider what to do depending on how
common it was. Let's assume we've been told that in our data each credit
account belongs to a unique person, so we may assume independence of
observations in this respect.

Across different domains of data, some common violations of independence
of observations are as follows:

Spatial autocorrelation of observations; for example, in natural
phenomena such as soil types, where observations that are
geographically close to each other may be similar to each other.

Temporal autocorrelation of observations, which may occur in time
series data. Observations at the current point in time are usually
assumed to be correlated to the most recent point(s) in time.

However, these issues are not relevant to our case study data.

No Outliers

Outliers are observations where the value of the feature(s) or response are
very far from most of the data or are different in some other way. A more



appropriate term for an outlier observation of a feature value is a high
leverage point, as the term "outlier" is usually applied to the response
variable. However, in our binary classification problem, it's not possible to
have an outlier value of the response variable, since it can only take on the
values 0 and 1. In practice, you may see both of these terms used to refer to
features.

To see why these kinds of points can have an adverse effect on linear models
in general, take a look at this synthetic linear data with 100 points and the
line of best fit that results from linear regression:

Figure 4.10: "Well-behaved" linear data and a regression fit

Here, the model intuitively appears to be a good fit for the data. However,
what if an outlier feature value is added? To illustrate this, we add a point
with an x value that is very different from most of the observations and a y
value that is in a similar range to the other observations. We then show the
resulting regression line:



Figure 4.11: A plot showing what happens when an outlier is included

Due to the presence of a single high leverage point, the regression model fit
for all the data is no longer a very good representation of much of the data.
This shows the potential effect of just a single data point on linear models,
especially if that point doesn't appear to follow the same trend as the rest of
the data.

There are methods for dealing with outliers. But a more fundamental
question to ask is "Is data like this realistic?". If the data doesn't seem right,
it is a good idea to ask the client whether the outliers are believable. If not,
they should be excluded. However, if they do represent valid data, then non-
linear models or other methods should be used.

With our case study data, we did not observe outliers in the histograms that
we plotted during feature exploration. Therefore, we don't have this concern.

How Many Features Should You Include?

This is not so much an assumption as it is guidance on model building.
There is no clear-cut law that states how many features to include in a
logistic regression model. However, a common rule of thumb is the "rule of



10," which states that for every 10 occurrences of the rarest outcome class, 1
feature may be added to the model. So, for example, in a binary logistic
regression problem with 100 samples, if the class balance has 20% positive
outcomes and 80% negative outcomes, then there are only 20 positive
outcomes in total, and so only 2 features should be used in the model. A
"rule of 20" has also been suggested, which would be a more stringent limit
on the number of features to include (1 feature in our example).

Another point to consider in the case of binary features, such as those that
result from one-hot encoding, is how many samples will have a positive
value for that feature. If the feature is very imbalanced, in other words, with
very few samples containing either a 1 or a 0, it may not make sense to
include it in the model.

For the case study data, we are fortunate to have a relatively large number of
samples and relatively balanced features, so these are not concerns.

Note

The code for generating the plots presented in this section can be found
here: https://packt.link/SnX3y.
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The Motivation for Regularization: The Bias-Variance
Trade-Off

We can extend the basic logistic regression model that we have learned
about by using a powerful concept known as shrinkage or regularization.
In fact, every logistic regression that you have fit so far in scikit-learn has
used some amount of regularization. That is because it is a default option in
the logistic regression model object. However, until now, we have ignored it.

As you learn about these concepts in greater depth, you will also become
familiar with a few foundational concepts in machine learning: overfitting,
underfitting, and the bias-variance trade-off. A model is said to overfit the
training data if the performance of the model on the training data (for
example, the ROC AUC) is substantially better than the performance on a
held-out test set. In other words, good performance on the training set does
not generalize to the unseen test set. We started to discuss these concepts in
Chapter 2, Introduction to Scikit-Learn and Model Evaluation, when we
distinguished between model training and test scores.

When a model is overfitted to the training data, it is said to have high
variance. In other words, whatever variability exists in the training data, the
model has learned this very well – in fact, too well. This will be reflected in
a high model training score. However, when such a model is used to make
predictions on new and unseen data, the performance is lower. Overfitting is
more likely in the following circumstances:

There are a large number of features available in relation to the number
of samples. In particular, there may be so many possible features that it
is cumbersome to directly inspect all of them, like we were able to do
with the case study data.

A complex model, that is, more complex than logistic regression, is
used. These include models such as gradient boosting ensembles or
neural networks.



Under these circumstances, the model has an opportunity develop more
complex hypotheses about the relationships between features and the
response variable in the training data during model fitting, making
overfitting more likely.

In contrast, if a model is not fitting the training data very well, this is known
as underfitting, and the model is said to have high bias.

We can examine the differences between underfitting, overfitting, and the
ideal that sits in between, by fitting polynomial models on some hypothetical
data:

Figure 4.12: Quadratic data with underfit, overfit, and ideal models

In Figure 4.12, we can see that including too few features, in this case, a
linear model of y with just two features, a slope and an intercept, is clearly
not a good representation of the data. This is known as an underfit model.
However, if we include too many features, that is, many high-degree
polynomial terms, such as x , x , x ,… x , we can fit the training data
almost perfectly. However, this is not necessarily a good thing. When we
look at the results of the overfitted model in between the training data points,
where new predictions may need to be made, we can see that the model is
unstable and may not provide reliable predictions for data that was not in the
training set. We can tell this just based on an intuitive understanding of the

2 3 4 10



relationship between the features and the response variable, which we can
get from visualizing the data.

Note

The code for generating the plots presented in this section can be found
here: https://packt.link/SnX3y.

The synthetic data for this example was generated by a second-degree (that
is, quadratic) polynomial. Knowing this, we could easily find the ideal
model by fitting a second-degree polynomial to the training data, as shown
in Figure 4.12.

In general, however, we won't know what the ideal model formulation is
ahead of time. For this reason, we need to compare training and test scores to
assess whether a model may be overfitting or underfitting.

In some cases, it may be desirable to introduce some bias into the model
training process, especially if this decreases overfitting and increases model
performance on new, unseen data. In this way, it may be possible to leverage
the bias-variance trade-off to improve a model. We can use regularization
methods to accomplish this. Additionally, we may also be able to use these
methods for variable selection as part of the modeling process. Using a
predictive model to select variables is an alternative to the univariate feature
selection methods that we've already explored. We begin to experiment with
these concepts in the following exercise.
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Exercise 4.02: Generating and Modeling Synthetic Classification
Data

In this exercise, we'll observe overfitting in practice by using a synthetic dataset.
Consider yourself in the situation of having been given a binary classification
dataset with many candidate features (200), where you don't have time to look
through all of them individually. It's possible that some of these features are
highly correlated or related in some other way. However, with this many
variables, it can be difficult to effectively explore all of them. Additionally, the
dataset has relatively few samples: only 1,000. We are going to generate this
challenging dataset by using a feature of scikit-learn that allows you to create
synthetic datasets for making conceptual explorations such as this. Perform the
following steps to complete the exercise:

Note

Before you begin this exercise, please make sure you have executed the
prerequisite steps of importing the necessary libraries. These steps along with the
code for this exercise can be found at https://packt.link/mIMsT.

1. Import the make_classification, train_test_split,
LogisticRegression, and roc_auc_score classes using the
following code:

from sklearn.datasets import make_classification

from sklearn.model_selection import
train_test_split

from sklearn.linear_model import
LogisticRegression

from sklearn.metrics import roc_auc_score

Notice that we've imported several familiar classes from scikit-learn, in
addition to a new one that we haven't seen before:
make_classification. This class does just what its name indicates – it
makes data for a classification problem. Using the various keyword

https://packt.link/mIMsT


arguments, you can specify how many samples and features to include, and
how many classes the response variable will have. There is also a range of
other options that effectively control how "easy" the problem will be to
solve.

Note

For more information, refer to https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.make_classification.ht
ml. Suffice to say that we've selected options here that make a reasonably
easy-to-solve problem, with some curveballs thrown in. In other words, we
expect high model performance, but we'll have to work a little bit to get it.

2. Generate a dataset with two variables, x_synthetic and y_synthetic.
x_synthetic has the 200 candidate features, and y_synthetic the
response variable, each for 1,000 samples. Use the following code:

X_synthetic, y_synthetic = make_classification(

    n_samples=1000, n_features=200,

    n_informative=3, n_redundant=10,

    n_repeated=0, n_classes=2,

    n_clusters_per_class=2,

    weights=None, flip_y=0.01,

    class_sep=0.8, hypercube=True,

    shift=0.0, scale=1.0,

    shuffle=True, random_state=24)

3. Examine the shape of the dataset and the class fraction of the response
variable using the following code:

print(X_synthetic.shape, y_synthetic.shape)

print(np.mean(y_synthetic))

You will obtain the following output:

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html


(1000, 200) (1000,)

0.501

After checking the shape of the output, note that we've generated an almost
perfectly balanced dataset: close to a 50/50 class balance. It is also important
to note that we've generated all the features so that they have the same
shift and scale – that is, a mean of 0 with a standard deviation of 1.
Making sure that the features are on the same scale, or have roughly the
same range of values, is a key point for using regularization methods – and
we'll see why later. If the features in a raw dataset are on widely different
scales, it is advisable to normalize them so that they are on the same scale.
Scikit-learn has the functionality to make this easy, which we'll learn about
in the activity at the end of this chapter.

4. Plot the first few features as histograms to show that the range of values is
the same using the following code:

for plot_index in range(4):

    plt.subplot(2, 2, plot_index+1)

    plt.hist(X_synthetic[:, plot_index])

    plt.title('Histogram for feature
{}'.format(plot_index+1))

plt.tight_layout()

You will obtain the following output:



Figure 4.13: Histograms for the first 4 of 200 synthetic features

Because we generated this dataset, we don't need to directly examine all 200
features to make sure that they're on the same scale. So, what are the
possible concerns with this dataset? The data is balanced in terms of the
class fractions of the response variable, so we don't need to undersample,
oversample, or use other methods that are helpful for imbalanced data. What
about relationships among the features themselves, and the features and
response variable? There are a lot of these relationships and it is a challenge
to investigate them all directly. Based on our rule of thumb (that is, 1 feature
allowed for every 10 samples of the rarest class), 200 features is too many.
We have 500 observations in the rarest class, so by that rule, we shouldn't
have more than 50 features. It's possible that with so many features, the
model training procedure will overfit. We will now start to learn how to use
options in the scikit-learn logistic regression to prevent this.

5. Split the data into training and test sets using an 80/20 split, and then
instantiate a logistic regression model object using the following code:

X_syn_train, X_syn_test, y_syn_train, y_syn_test
= \

train_test_split(X_synthetic, y_synthetic,\



                 test_size=0.2, random_state=24)

lr_syn = LogisticRegression(solver='liblinear',
penalty='l1',

                            C=1000,
random_state=1)

lr_syn.fit(X_syn_train, y_syn_train)

Notice here that we are specifying some new options in the logistic
regression model, which, so far, we have not paid attention to. First, we
specify the penalty argument to be l1. This means we are going to use
L1 regularization, which is also known as lasso regularization. We'll
discuss the mathematical definition of this shortly. Second, notice that we
have set the C parameter to be equal to 1,000. C is the "inverse of
regularization strength," according to the scikit-learn documentation
(https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression
.html). This means that higher values of C correspond to less regularization.
By choosing a relatively large number, such as 1,000, we are using relatively
little regularization. The default value of C is 1. So, we are not really using
much regularization here, rather, we are simply becoming familiar with the
options to do so. Finally, we are using the liblinear solver, which we
have used in the past.

Although we happen to be using scaled data here (all features have a mean
of 0 and standard deviation of 1), it's worth noting at this point that among
the various options we have available for solvers, liblinear is "robust to
unscaled data." Also note that liblinear is one of only two solver
options that support the L1 penalty – the other option being saga.

Note

You can find out more information on available solvers at https://scikit-
learn.org/stable/modules/linear_model.html#logistic-regression.

6. Fit the logistic regression model on the training data using the following
code:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression


lr_syn.fit(X_syn_train, y_syn_train)

Here is the output:

LogisticRegression(C=1000, penalty='l1',
random_state=1, \

                   solver='liblinear')

7. Calculate the training score using this code by first getting predicted
probabilities and then obtaining the ROC AUC:

y_syn_train_predict_proba =
lr_syn.predict_proba(X_syn_train)

roc_auc_score(y_syn_train,
y_syn_train_predict_proba[:,1])

The output should be as follows:

0.9420000000000001

8. Calculate the test score similar to how the training score was obtained:

y_syn_test_predict_proba =
lr_syn.predict_proba(X_syn_test)

roc_auc_score(y_syn_test,
y_syn_test_predict_proba[:,1])

The output should be as follows:

0.8075807580758075

From these results, it's apparent that the logistic regression model has overfit
the data. That is, the ROC AUC score on the training data is substantially
higher than that of the test data.
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Lasso (L1) and Ridge (L2) Regularization

Before applying regularization to a logistic regression model, let's take a
moment to understand what regularization is and how it works. The two
ways of regularizing logistic regression models in scikit-learn are called
lasso (also known as L1 regularization) and ridge (also known as L2
regularization). When instantiating the model object from the scikit-learn
class, you can choose penalty = 'l1' or 'l2'. These are called
"penalties" because the effect of regularization is to add a penalty, or a cost,
for having larger values of the coefficients in a fitted logistic regression
model.

As we've already learned, coefficients in a logistic regression model describe
the relationship between the log odds of the response and each of the
features. Therefore, if a coefficient value is particularly large, then a small
change in that feature will have a large effect on the prediction. When a
model is being fit and is learning the relationship between features and the
response variable, the model can start to learn the noise in the data. We saw
this previously in Figure 4.12: if there are many features available when
fitting a model, and there are no guardrails on the values that their
coefficients can take, then the model fitting process may try to discover
relationships between the features and the response variable that won't
generalize to new data. In this way, the model becomes tuned to the
unpredictable, random noise that accompanies real-world, imperfect data.
Unfortunately, this only serves to increase the model's skill at predicting the
training data, which is not our ultimate goal. Therefore, we should seek to
root out such spurious relationships from the model.

Lasso and ridge regularization use different mathematical formulations to
accomplish this goal. These methods work by making changes to the cost
function that is used for model fitting, which we introduced previously as the
log-loss function. Lasso regularization uses what is called the 1-norm
(hence the term L1):



Figure 4.14: Log-loss equation with lasso penalty

The 1-norm, which is the first term in the equation in Figure 4.14, is just the
sum of the absolute values of the coefficients of the m different features. The
absolute value is used because having a coefficient that's large in either the
positive or negative directions can contribute to overfitting. So, what else is
different about this cost function compared to the log-loss function that we
saw earlier? Well, now there is a C factor that is multiplied by the fraction in
front of the sum of the log-loss function.

This is the "inverse of regularization strength," as described in the scikit-
learn documentation (https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression
.html). Since this factor is in front of the term of the cost function that
calculates the prediction error, as opposed to the term that does
regularization, then making it larger makes the prediction error more
important in the cost function, while regularization is made less important.
In short, larger values of C lead to less regularization in the scikit-learn
implementation.

L2, or ridge regularization, is similar to L1, except that instead of the sum of
absolute values of coefficients, ridge uses the sum of their squares, called the
2-norm:

Figure 4.15: Log-loss equation with ridge penalty

Note that if you look at the cost functions for logistic regression in the scikit-
learn documentation, the specific form is different than what is used here,
but the overall idea is similar. Additionally, after you become comfortable

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


with the concepts of lasso and ridge penalties, you should be aware that there
is an additional regularization method called elastic-net, which is a
combination lasso and ridge.

Why Are There Two Different Formulations of Regularization?

It may be that one or the other will provide better out-of-sample
performance, so you may wish to test them both. There is another key
difference in these methods: the L1 penalty also performs feature selection,
in addition to regularization. It does this by setting some coefficient values
to exactly zero during the regularization process, effectively removing
features from the model. L2 regularization makes the coefficient values
smaller but does not completely eliminate them. Not all solver options in
scikit-learn support both L1 and L2 regularization, so you will need to select
an appropriate solver for the regularization technique you want to use.

Note

The mathematical details of why L1 regularization removes features but L2
doesn't are beyond the scope of this book. However, for a more thorough
explanation of this topic and further reading in general, we recommend the
very readable (and free) resource, An Introduction to Statistical Learning by
Gareth James, et al. In particular, see page 222 of the corrected 7th printing,
for a helpful graphic on the difference between L1 and L2 regularization.

Intercepts and Regularization

We have not discussed intercepts very much, other than to note that we have
been estimating them with our linear models, along with the coefficients that
go with each feature. So, should you use an intercept? The answer is
probably yes, until you've developed an advanced understanding of linear
models and are certain that in a specific case you should not. However, such
cases do exist, for example, in a linear regression where the features and the
response variable have all been normalized to have a mean of zero.



Intercepts don't go with any particular feature. Therefore, it doesn't make
much sense to regularize them, as they shouldn't contribute to overfitting.
Notice that in the regularization penalty term for L1, the summation starts
with j = 1, and similarly for L2, we have skipped σ , which is the intercept
term.

This is the ideal situation: not regularizing the intercept. However, some of
the solvers in scikit-learn, such as liblinear, actually do regularize the
intercept. There is an intercept_scaling option that you can supply to
the model class to counteract this effect. We have not illustrated this here as,
although it is theoretically incorrect, regularizing the intercept often does not
have much effect on the model's predictive quality in practice.

Scaling and Regularization

As noted in the previous exercise, it is best practice to scale the data so that
all the features have roughly the same range of values before using
regularization. This is because the coefficients are all going to be subject to
the same penalty in the cost function. If the range of values for a particular
feature, such as LIMIT_BAL in our dataset, is much larger than other
features, such as PAY_1, it may, in fact, be desirable to have a larger value
for the coefficient of PAY_1 and a smaller value for that of LIMIT_BAL in
order to put their effects on the same scale in the linear combination of
features and coefficients that are used for model prediction. Normalizing all
the features before using regularization avoids complications such as this
that arise simply from differences in scale.

In fact, scaling your data may also be necessary, depending on which solver
you are using. The different variations on the gradient descent process
available in scikit-learn may or may not be able to work effectively with
unscaled data.

The Importance of Selecting the Right Solver

As we've come to learn, the different solvers available for logistic regression
in scikit-learn have different behaviors regarding the following:
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Whether they support both L1 and L2 regularization

How they treat the intercept during regularization

How they deal with unscaled data

Note

There are other differences as well. A helpful table comparing these and
other traits is available at https://scikit-
learn.org/stable/modules/linear_model.html#logistic-regression. You
can use this table to decide which solver is appropriate for your
problem.

To summarize this section, we have learned the mathematical foundations of
lasso and ridge regularization. These methods work by shrinking the
coefficient values toward 0, and in the case of the lasso, setting some
coefficients to exactly 0 and thus performing feature selection. You can
imagine that in our example of overfitting in Figure 4.12, if the complex,
overfitted model had some coefficients shrunk toward 0, it would look more
like the ideal model, which has fewer coefficients.

Here is a plot of a regularized regression model, using the same high-degree
polynomial features as the overfitted model, but with a ridge penalty:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression


Figure 4.16: An overfit model and regularized model using the same
features

The regularized model looks similar to the ideal model, demonstrating the
ability of regularization to correct overfitting. Note, however, that the
regularized model should not be recommended for extrapolation. Here, we
can see that the regularized model starts to increase toward the right side of
Figure 4.16. This increase should be viewed with suspicion, as there is
nothing in the training data that makes it clear that this would be expected.
This is an example of the general view that the extrapolation of model
predictions outside the range of training data is not recommended. However,
it is clear from Figure 4.16 that even if we didn't have knowledge of the
model that was used to generate this synthetic data (as we typically don't
have knowledge of the data-generating process in real-world predictive
modeling work), we can still use regularization to reduce the effect of
overfitting when a large number of candidate features are available.

Model and Feature Selection

L1 regularization is one way to use a model, such as logistic regression, to
perform feature selection. Other methods include forward or backward
stepwise selection from the pool of candidate features. Here is the high-level
idea behind these methods: in the case of forward selection, features are
added to the model one at a time, and the out-of-sample performance is



observed along the way. At each iteration, the addition of all possible
features from the candidate pool is considered, and the one resulting in the
greatest increase in the out-of-sample performance is chosen. When adding
additional features ceases to improve the model's performance, no more
features need to be added from the candidates. In the case of backward
selection, you first start with all the features in the model and determine
which one you should remove: the one resulting in the smallest decrease in
the out-of-sample performance. You can continue removing features in this
way until the performance begins to decrease appreciably.

Note

The code for generating the plots presented in this section can be found
here: https://packt.link/aUBMb.

OceanofPDF.com

https://packt.link/aUBMb
https://oceanofpdf.com/


Cross-Validation: Choosing the Regularization Parameter

By now, you may suspect that we could use regularization in order to
decrease the overfitting we observed when we tried to model the synthetic
data in Exercise 4.02, Generating and Modeling Synthetic Classification
Data. The question is, how do we choose the regularization parameter, C? C
is an example of a model hyperparameter. Hyperparameters are different
from the parameters that are estimated when a model is trained, such as the
coefficients and the intercept of a logistic regression. Rather than being
estimated by an automated procedure like the parameters are,
hyperparameters are input directly by the user as keyword arguments,
typically when instantiating the model class. So, how do we know what
values to choose?

Hyperparameters are more difficult to estimate than parameters. This is
because it is up to the data scientist to determine what the best value is, as
opposed to letting an optimization algorithm find it. However, it is possible
to programmatically choose hyperparameter values, which could be viewed
as an optimization procedure in its own right. Practically speaking, in the
case of the regularization parameter C, this is most commonly done by
fitting the model on one set of data with a particular value of C, determining
model training performance, and then assessing the out-of-sample
performance on another set of data.

We are already familiar with the concept of using model training and test
sets. However, there is a key difference here; for instance, what would
happen if we were to use the test set multiple times in order to see the effect
of different values of C?

It may occur to you that after the first time you use the unseen test set to
assess the out-of-sample performance for a particular value of C, it is no
longer an "unseen" test set. While only the training data was used for
estimating the model parameters (that is, the coefficients and the intercept),
now the test data is being used to estimate the hyperparameter C. Effectively,



the test data has now become additional training data in the sense that it is
being used to find a good value for the hyperparameter.

For this reason, it is common to divide the data into three parts: a training
set, a test set, and a validation set. The validation set serves multiple
purposes:

Estimating Hyperparameters

The validation set can be repeatedly used to assess the out-of-sample
performance with different hyperparameter values to select hyperparameters.

A Comparison of Different Models

In addition to finding hyperparameter values for a model, the validation set
can be used to estimate the out-of-sample performance of different models;
for example, if we wanted to compare logistic regression to random forest.

Note

Data Management Best Practices

As a data scientist, it's up to you to figure out how to divide up your data for
different predictive modeling tasks. In the ideal case, you should reserve a
portion of your data for the very end of the process, after you've already
selected model hyperparameters and also selected the best model. This
unseen test set is reserved for the last step, when it can be used to assess the
endpoint of your model-building efforts, to see how the final model
generalizes to new unseen data. When reserving the test set, it is good
practice to make sure that the features and responses have similar
characteristics to the rest of the data. In other words, the class fraction
should be the same, and the distribution of features should be similar. This
way, the test data should be representative of the data you built the
model with.



While model validation is a good practice, it raises the question of whether
the particular split we choose for the training, validation, and test data has
any effect on the outcomes that we are tracking. For example, perhaps the
relationship between the features and the response variable is slightly
different in the unseen test set that we have reserved, or in the validation set,
versus the training set. It is likely impossible to eliminate all such variability,
but we can use the method of cross-validation to avoid placing too much
faith in one particular split of the data.

Scikit-learn provides convenient functions to facilitate cross-validation
analyses. These functions play a similar role to train_test_split,
which we have already been using, although the default behavior is
somewhat different. Let's get familiar with them now. First, import these two
classes:

from sklearn.model_selection import
StratifiedKFold

from sklearn.model_selection import KFold

Similar to train_test_split, we need to specify what proportion of
the dataset we would like to use for training versus testing. However, with
cross-validation (specifically the k-fold cross-validation that was
implemented in the classes we just imported), rather than specifying a
proportion directly, we simply indicate how many folds we would like – that
is, the "k folds." The idea here is that the data will be divided into k equal
proportions. For example, if we specify 4 folds, then each fold will have
25% of the data. These folds will be the test data in four separate instances
of model training, while the remaining 75% from each fold will be used to
train the model. In this procedure, each data point gets used as training data a
total of k - 1 times, and as test data only once.

When instantiating the class, we indicate the number of folds, whether or not
to shuffle the data before splitting, and a random seed if we want repeatable
results across different runs:

n_folds = 4



k_folds = KFold(n_splits=n_folds, shuffle=False)

Here, we've instantiated an object with four folds and no shuffling. The way
in which we use the object that is returned, which we've called k_folds, is
by passing the features and response data that we wish to use for cross-
validation, to the .split method of this object. This outputs an iterator,
which means that we can loop through the output to get the different splits of
training and test data. If we took the training data from our synthetic
classification problem, X_syn_train and y_syn_train, we could loop
through the splits like this:

for train_index, test_index in
k_folds_iterator.split(X_syn_train,

                                                 
     y_syn_train):

The iterator will return the row indices of X_syn_train and
y_syn_train, which we can use to index the data. Inside this for loop,
we can write code to use these indices to select data for repeatedly training
and testing a model object with different subsets of the data. In this way, we
can get a robust indication of the out-of-sample performance when using one
particular hyperparameter value, and then repeat the whole process using
another hyperparameter value. Consequently, the cross-validation loop may
sit nested inside an outer loop over different hyperparameter values. We'll
illustrate this in the following exercise.

First though, what do these splits look like? If we were to simply plot the
indices from train_index and test_index as different colors, we
would get something that looks like this:



Figure 4.17: Training/test splits for k-folds with four folds and no
shuffling

Here, we see that with the options we've indicated for the KFold class, the
procedure has simply taken the first 25% of the data, according to the order
of rows, as the first test fold, then the next 25% of data for the second fold,
and so on. But what if we wanted stratified folds? In other words, what if we
wanted to ensure that the class fractions of the response variable were equal
in every fold? While train_test_split allows this option as a
keyword argument, there is a separate StratifiedKFold class that
implements this for cross-validation. We can illustrate how the stratified
splits will appear as follows:

k_folds = StratifiedKFold(n_splits=n_folds,
shuffle=False)



Figure 4.18: Training/test splits for stratified k-folds

In Figure 4.18, we can see that there has been some amount of "shuffling"
between the different folds. The procedure has moved samples between folds
as necessary to ensure that the class fractions in each fold are equal.

Now, what if we want to shuffle the data to choose samples from throughout
the range of indices for each test fold? First, why might we want to do this?
Well, with the synthetic data that we've created for our problem, we can be
certain that the data is in no particular order. However, in many real-world
situations, the data we receive may be sorted in some way.

For instance, perhaps the rows of the data have been ordered by the date an
account was created, or by some other logic. Therefore, it can be a good idea
to shuffle the data before splitting. This way, any traits that might have been
used for sorting can be expected to be consistent throughout the folds.
Otherwise, the data in different folds may have different characteristics,
possibly leading to different relationships between features and response.



This can lead to a situation where model performance is uneven between the
folds. In order to "mix up" the folds throughout all the row indices of a
dataset, all we need to do is set the shuffle parameter to True:

k_folds = StratifiedKFold(n_splits=n_folds,
shuffle=True,

                          random_state=1)

Figure 4.19: Training/test splits for stratified k-folds with shuffling

With shuffling, the test folds are spread out randomly, and fairly evenly,
across the indices of the input data.

K-fold cross-validation is a widely used method in data science. However,
the choice of how many folds to use depends on the particular dataset at
hand. Using a smaller number of folds means that the amount of training
data in each fold will be relatively small. Therefore, this increases the
chances that the model will underfit, as models generally work better when



trained on more data. It's a good idea to try a few different numbers of folds
and see how the mean and the variability of the k-fold test score changes.
Common numbers of folds can range anywhere from 4 or 5 to 10.

In the event of a very small dataset, it may be necessary to use as much data
as possible for training in the cross-validation folds. In this scenario, you can
use a method called leave-one-out cross-validation (LOOCV). In LOOCV,
the test set for each fold consists of a single sample. In other words, there
will be as many folds as there are samples in the training data. For each
iteration, the model is trained on all but one sample, and a prediction is made
for that sample. The accuracy, or other performance metric, can then be
constructed using these predictions.

Other concerns that relate to the creation of a test set, such as choosing an
out-of-time test set for problems where observations from the past must be
used to predict future events, also apply to cross-validation.

In Exercise 4.02, Generating and Modeling Synthetic Classification Data,
we saw that fitting a logistic regression on our training data led to
overfitting. Indeed, the test score (ROC AUC = 0.81) was substantially lower
than the training score (ROC AUC = 0.94). We had essentially used very
little or no regularization by setting the regularization parameter C to a
relatively large value (1,000). Now we will see what happens when we vary
C through a wide range of values.

Note

The code for generating the plots presented in this section can be found
here: https://packt.link/37Zks.
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Exercise 4.03: Reducing Overfitting on the Synthetic Data
Classification Problem

This exercise is a continuation of Exercise 4.02, Generating and Modeling
Synthetic Classification Data. Here, we will use a cross-validation procedure in
order to find a good value for the hyperparameter C. We will do this by using
only the training data, reserving the test data for after model building is complete.
Be prepared – this is a long exercise – but it will illustrate a general procedure
that you will be able to use with many different kinds of machine learning
models, so it is worth the time spent here. Perform the following steps to
complete the exercise:

Note

Before you begin this exercise, you need to execute some prerequisite steps that
can be found in the following notebook along with the code for this exercise:
https://packt.link/JqbsW.

1. Vary the value of the regularization parameter, C, to range from C = 1000 to
C = 0.001. You can use the following snippets to do this.

First, define exponents, which will be powers of 10, as follows:

C_val_exponents = np.linspace(3,-3,13)

C_val_exponents

Here is the output of the preceding code:

array([ 3. , 2.5, 2. , 1.5, 1. , 0.5, 0. , -0.5,
-1. , -1.5, -2. , -2.5, -3. ])

Now, vary C by the powers of 10, as follows:

C_vals = np.float(10)**C_val_exponents

C_vals

https://packt.link/JqbsW


Here is the output of the preceding code:

array([1.00000000e+03, 3.16227766e+02,
1.00000000e+02, 3.16227766e+01,

       1.00000000e+01, 3.16227766e+00,
1.00000000e+00, 3.16227766e-01,

       1.00000000e-01, 3.16227766e-02,
1.00000000e-02, 3.16227766e-03,

       1.00000000e-03])

It's generally a good idea to vary the regularization parameter by powers of
10, or by using a similar strategy, as training models can take a substantial
amount of time, especially when using k-fold cross-validation. This gives
you a good idea of how a wide range of C values impacts the bias-variance
trade-off, without needing to train a very large number of models. In
addition to the integer powers of 10, we also include points on the log
scale that are about halfway between. If it seems like there is some
interesting behavior in between these relatively widely spaced values, you
can add more granular values for C in a smaller part of the range of possible
values.

2. Import the roc_curve class:

from sklearn.metrics import roc_curve

We'll continue to use the ROC AUC score for assessing, training, and testing
performance. Now that we have several values of C to try and several folds
(in this case four) for the cross-validation, we will want to store the training
and test scores for each fold and for each value of C.

3. Define a function that takes the k_folds cross-validation splitter, the array
of C values (C_vals), the model object (model), and the features and
response variable (X and Y, respectively) as inputs, to explore different
amounts of regularization with k-fold cross-validation. Use the following
code:

def cross_val_C_search(k_folds, C_vals, model, X,
Y):

10



Note

The function we started in this step will return the ROC AUCs and ROC
curve data. The return block will be written during a later step in the
exercise. For now, you can simply write the preceding code as is, because we
will be defining k_folds, C_vals, model, X, and Y as we progress in
the exercise.

4. Within this function block, create a NumPy array to hold model performance
data, with dimensions n_folds by len(C_vals):

n_folds = k_folds.n_splits

cv_train_roc_auc = np.empty((n_folds,
len(C_vals)))

cv_test_roc_auc = np.empty((n_folds,
len(C_vals)))

Next, we'll store the arrays of true and false positive rates and thresholds that
go along with each of the test ROC AUC scores in a list of lists.

Note

This is a convenient way to store all this model performance information, as
a list in Python can contain any kind of data, including another list. Here,
each item of the inner lists in the list of lists will be a tuple holding the
arrays of TPR, FPR, and the thresholds for each of the folds, for each of the
C values. Tuples are an ordered collection data type in Python, similar to
lists, but unlike lists they are immutable: the items in a tuple can't be
changed after the tuple is created. When a function returns multiple values,
like the roc_curve function of scikit-learn, these values can be output to a
single variable, which will be a tuple of those values. This way of storing
results should be more obvious when we access these arrays later in order to
examine them.

5. Create a list of empty lists using [[]] and *len(C_vals) as follows:

cv_test_roc = [[]]*len(C_vals)



Using *len(C_vals) indicates that there should be a list of tuples of
metrics (TPR, FPR, thresholds) for each value of C.

We have learned how to loop through the different folds for cross-validation
in the preceding section. What we need to do now is write an outer loop in
which we will nest the cross-validation loop.

6. Create an outer loop for training and testing each of the k-folds for each
value of C:

for c_val_counter in range(len(C_vals)):

    #Set the C value for the model object

    model.C = C_vals[c_val_counter]

    #Count folds for each value of C

    fold_counter = 0

We can reuse the same model object that we have already, and simply set a
new value of C within each run of the loop. Inside the loop of C values, we
run the cross-validation loop. We begin by yielding the training and test data
row indices for each split.

7. Obtain the training and test indices for each fold:

for train_index, test_index in k_folds.split(X,
Y):

8. Index the features and response variable to obtain the training and test data
for this fold using the following code:

X_cv_train, X_cv_test = X[train_index],
X[test_index]

y_cv_train, y_cv_test = Y[train_index],
Y[test_index]

The training data for the current fold is then used to train the model.

9. Fit the model on the training data, as follows:

model.fit(X_cv_train, y_cv_train)



This will effectively "reset" the model from whatever the previous
coefficients and intercept were to reflect the training on this new data.

The training and test ROC AUC scores are then obtained, as well as the
arrays of TPRs, FPRs, and thresholds that go along with the test data.

10. Obtain the training ROC AUC score:

y_cv_train_predict_proba =
model.predict_proba(X_cv_train)

cv_train_roc_auc[fold_counter, c_val_counter] = \

roc_auc_score(y_cv_train,
y_cv_train_predict_proba[:,1])

11. Obtain the test ROC AUC score:

y_cv_test_predict_proba =
model.predict_proba(X_cv_test)

cv_test_roc_auc[fold_counter, c_val_counter] = \

roc_auc_score(y_cv_test,
y_cv_test_predict_proba[:,1])

12. Obtain the test ROC curves for each fold using the following code:

this_fold_roc = roc_curve(y_cv_test,
y_cv_test_predict_proba[:,1])

cv_test_roc[c_val_counter].append(this_fold_roc)

We will use a fold counter to keep track of the folds that are incremented,
and once outside the cross-validation loop, we print a status update to
standard output. Whenever performing long computational procedures, it's a
good idea to periodically print the status of the job so that you can monitor
its progress and confirm that things are still working correctly. This cross-
validation procedure will likely take only a few seconds on your laptop, but
for longer jobs this can be especially reassuring.

13. Increment the fold counter using the following code:

fold_counter += 1



14. Write the following code to indicate the progress of execution for each value
of C:

print('Done with C = {}'.format(lr_syn.C))

15. Write the code to return the ROC AUCs and ROC curve data and finish
the function:

return cv_train_roc_auc, cv_test_roc_auc,
cv_test_roc

Note that we will continue to use the split into four folds that we illustrated
previously, but you are encouraged to try this procedure with different
numbers of folds to compare the effect.

We have covered a lot of material in the preceding steps. You may want to
take a few moments to review this with your classmates in order to make
sure that you understand each part. Running the function is comparatively
simple. That is the beauty of a well-designed function – all the complicated
parts get abstracted away, allowing you to concentrate on usage.

16. Run the function we've designed to examine cross-validation performance,
with the C values that we previously defined, and by using the model and
data we were working with in the previous exercise. Use the following code:

cv_train_roc_auc, cv_test_roc_auc, cv_test_roc =
\

cross_val_C_search(k_folds, C_vals, lr_syn,
X_syn_train, y_syn_train)

When you run this code, you should see the following output populate below
the code cell as the cross-validation is completed for each value of C:

Done with C = 1000.0

Done with C = 316.22776601683796

Done with C = 100.0

Done with C = 31.622776601683793

Done with C = 10.0



Done with C = 3.1622776601683795

Done with C = 1.0

Done with C = 0.31622776601683794

Done with C = 0.1

Done with C = 0.03162277660168379

Done with C = 0.01

Done with C = 0.0031622776601683794

Done with C = 0.001

So, what do the results of the cross-validation look like? There are a few
ways to examine this. It is useful to look at the performance of each fold
individually, so that you can see how variable the results are.

This tells you how different subsets of your data perform as test sets, leading
to a general idea of the range of performance you can expect from the
unseen test set. What we're interested in here is whether or not we are able to
use regularization to alleviate the overfitting that we saw. We know that
using C = 1,000 led to overfitting – we know this from comparing the
training and test scores. But what about the other C values that we've tried?
A good way to visualize this will be to plot the training and test scores on the
y-axis and the values of C on the x-axis.

17. Loop over each of the folds to view their results individually by using the
following code:

for this_fold in range(k_folds.n_splits):

    plt.plot(C_val_exponents,
cv_train_roc_auc[this_fold], '-o',\

             color=cmap(this_fold),\

             label='Training fold
{}'.format(this_fold+1))

    plt.plot(C_val_exponents,
cv_test_roc_auc[this_fold], '-x',\



             color=cmap(this_fold),\

             label='Testing fold
{}'.format(this_fold+1))

plt.ylabel('ROC AUC')

plt.xlabel('log$_{10}$(C)')

plt.legend(loc = [1.1, 0.2])

plt.title('Cross validation scores for each
fold')

You will obtain the following output:

Figure 4.20: The training and test scores for each fold and C-value

We can see that for each fold of the cross-validation, as C decreases, the
training performance also decreases. However, at the same time, the test
performance increases. For some folds and values of C, the test ROC AUC
score actually exceeds that of the training data, while for others, these two
metrics simply come closer together. In all cases, we can say that the C
values of 10  and 10  appear to have a similar test performance, which is
substantially higher than the test performance of C = 10 . So, it appears that
regularization has successfully addressed our overfitting problem.
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But what about the lower values of C? For values that are lower than 10 ,
the ROC AUC metric suddenly drops to 0.5. As you know, this value means
that the classification model is essentially useless, performing no better than
a coin flip. You are encouraged to check on this later when exploring how
regularization affects the coefficient values; however, this is what happens
when so much L1 regularization is applied that all model coefficients shrink
to 0. Obviously, such models are not useful to us, as they encode no
information about the relationship between the features and response
variable.

Looking at the training and test performance of each k-fold split is helpful
for gaining insights into the variability of model performance that may be
expected when the model is scored on new, unseen data. But in order to
summarize the results of the k-folds procedure, a common approach is to
average the performance metric over the folds, for each value of the
hyperparameter being considered. We'll perform this in the next step.

18. Plot the mean of training and test ROC AUC scores for each C value using
the following code:

plt.plot(C_val_exponents,
np.mean(cv_train_roc_auc, axis=0), \

         '-o', label='Average training score')

plt.plot(C_val_exponents,
np.mean(cv_test_roc_auc, axis=0), \

         '-x', label='Average testing score')

plt.ylabel('ROC AUC')

plt.xlabel('log$_{10}$(C)')

plt.legend()

plt.title('Cross validation scores averaged over
all folds')
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Figure 4.21: The average training and test scores across cross-validation
folds

From this plot, it's clear that C = 10  and 10  are the best values of C.
There is little or no overfitting here, as the average training and test scores
are nearly the same. You could search a finer grid of C values (that is C =
10 , 10 , and so on) in order to more precisely locate a C value.
However, from our graph, we can see that either C = 10  or C = 10  will
likely be good solutions. We will move forward with C = 10 .

Examining the summary metric of ROC AUC is a good way to get a quick
idea of how models will perform. However, for any real-world business
application, you will often need to choose a specific threshold, which goes
along with specific true and false positive rates. These will be needed to use
the classifier to make the required "yes" or "no" decision, which, in our case
study, is a prediction of whether an account will default. For this reason, it is
useful to look at the ROC curves across the different folds of the cross-
validation. To facilitate this, the preceding function has been designed to
return the true and false positive rates, and thresholds, for each test fold and
value of C, in the cv_test_roc list of lists. First, we need to find the
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index of the outer list that corresponds to the C value that we've chosen, 10
.

To accomplish this, we could simply look at our list of C values and count
by hand, but it's safer to do this programmatically by finding the index of the
non-zero element of a Boolean array, as is shown in the next step.

19. Use a Boolean array to find the index where C = 10  and convert it to an
integer data type with the following code:

best_C_val_bool = C_val_exponents == -1.5

best_C_val_bool.astype(int)

Here is the output of the preceding code:

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0])

20. Convert the integer version of the Boolean array into a single integer index
using the nonzero function with this code:

best_C_val_ix =
np.nonzero(best_C_val_bool.astype(int))
best_C_val_ix[0][0]

Here is the output of the preceding code:

9

We have now successfully located the C value that we wish to use.

21. Access the true and false positive rates in order to plot the ROC curves for
each fold:

for this_fold in range(k_folds_n_splits):

    fpr = cv_test_roc[best_C_val_ix[0][0]]
[this_fold][0]

    tpr = cv_test_roc[best_C_val_ix[0][0]]
[this_fold][1]

-
1.5

-1.5



    plt.plot(fpr, tpr, label='Fold
{}'.format(this_fold+1))

plt.xlabel('False positive rate')

plt.ylabel('True positive rate')

plt.title('ROC curves for each fold at C =
$10^{-1.5}$')

plt.legend()

You will obtain the following output:

Figure 4.22: ROC curves for each fold

It appears that there is a fair amount of variability in the ROC curves. For
example, if, for some reason, we want to limit the false positive rate to 40%,
then from the plot it appears that we may be able to achieve a true positive
rate of anywhere from approximately 60% to 80%. You can find the exact
values by examining the arrays that we have plotted. This gives you an idea
of how much variability in performance can be expected when deploying the
model on new data. Generally, the more training data that is available, then
the less variability there will be between the folds of cross-validation, so this



could also be a sign that it would be a good idea to collect additional data,
especially if the variability between training folds seems unacceptably high.
You also may wish to try different numbers of folds with this procedure so as
to see the effect on the variability of results between folds.

While normally we would try other models on our synthetic data problem,
such as a random forest or support vector machine, if we imagine that in
cross-validation, logistic regression proved to be the best model, we would
decide to make this our final choice. When the final model is selected, all the
training data can be used to fit the model, using the hyperparameters chosen
with cross-validation. It's best to use as much data as possible in model
fitting, as models typically work better when trained on more data.

22. Train the logistic regression on all the training data from our synthetic
problem and compare the training and test scores, using the held-out test set
as shown in the following steps.

Note

This is the final step in the model selection process. You should only use the
unseen test set after your choice of model and hyperparameters are
considered finished, otherwise it will not be "unseen."

23. Set the C value and train the model on all the training data with this code:

lr_syn.C = 10**(-1.5)

lr_syn.fit(X_syn_train, y_syn_train)

Here is the output of the preceding code:

LogisticRegression(C=0.03162277660168379,
penalty='l1', \

                   random_state=1,
solver='liblinear'))

24. Obtain predicted probabilities and the ROC AUC score for the training data
with this code:



y_syn_train_predict_proba =
lr_syn.predict_proba(X_syn_train)

roc_auc_score(y_syn_train,
y_syn_train_predict_proba[:,1])

Here is the output of the preceding code:

0.8802812499999999

25. Obtain predicted probabilities and the ROC AUC score for the test data with
this code:

y_syn_test_predict_proba =
lr_syn.predict_proba(X_syn_test)

roc_auc_score(y_syn_test,
y_syn_test_predict_proba[:,1])

Here is the output of the preceding code:

0.8847884788478848

Here, we can see that by using regularization, the model training and test
scores are similar, indicating that the overfitting problem has been greatly
reduced. The training score is lower since we have introduced bias into the
model at the expense of variance. However, this is OK, since the test score,
which is the most important part, is higher. The out-of-sample test score is
what matters for predictive capability. You are encouraged to check that
these training and test scores are similar to those from the cross-validation
procedure by printing the values from the arrays that we plotted previously;
you should find that they are.

Note

In a real-world project, before delivering this model to your client for
production use, you may wish to train the model on all the data that you
were given, including the unseen test set. This follows the idea that the more
data a model has seen, the better it is likely to perform in practice. However,
some practitioners prefer to only use models that have been tested, meaning



you would deliver the model trained only on the training data, not including
the test set.

We know that L1 regularization works by decreasing the magnitude (that is,
absolute value) of coefficients of the logistic regression. It can also set some
coefficients to zero, therefore performing feature selection. In the next step,
we will determine how many coefficients were set to zero.

26. Access the coefficients of the trained model and determine how many do not
equal zero (!= 0) with this code:

sum((lr_syn.coef_ != 0)[0])

The output should be as follows:

2

This code takes the sum of a Boolean array indicating the locations of non-
zero coefficients, so it shows how many coefficients in the model did not get
set to zero by L1 regularization. Only 2 of the 200 features were selected!

27. Examine the value of the intercept using this code:

lr_syn.intercept_

The output should be as follows:

array([0.])

This shows that the intercept was regularized to 0.

In this exercise, we accomplished several goals. We used the k-fold cross-
validation procedure to tune the regularization hyperparameter. We saw the power
of regularization for reducing overfitting, and in the case of L1 regularization in
logistic regression, selecting features.

Many machine learning algorithms offer some type of feature selection capability.
Many also require the tuning of hyperparameters. The function here that loops
over hyperparameters, and performs cross-validation, is a powerful concept that
generalizes to other models. Scikit-learn offers functionality to make this process
easier; in particular, the sklearn.model_selection.GridSearchCV



procedure, which applies cross-validation to a grid search over hyperparameters.
A grid search can be helpful when there are multiple hyperparameters to tune, by
looking at all combinations of the ranges of different hyperparameters that you
specify. A randomized grid search can speed up this process by randomly
choosing a smaller number of combinations when an exhaustive grid search
would take too long. Once you are comfortable with the concepts illustrated here,
you are encouraged to streamline your workflow with convenient functions like
these.
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Options for Logistic Regression in Scikit-Learn

We have used and discussed most of the options that you may supply to
scikit-learn when instantiating or tuning the hyperparameters of a
LogisticRegression model class. Here, we list them all and provide
some general advice on their usage:

Figure 4.23: A complete list of options for the logistic regression model
in scikit-learn



If you are in doubt regarding which option to use for logistic regression, we
recommend you consult the scikit-learn documentation for further guidance
(https://scikit-learn.org/stable/modules/linear_model.html#logistic-
regression). Some options, such as the regularization parameter C, or the
choice of a penalty for regularization, will need to be explored through the
cross-validation process. Here, as with many choices to be made in data
science, there is no universal approach that will apply to all datasets. The
best way to see which options to use with a given dataset is to try several of
them and see which gives the best out-of-sample performance. Cross-
validation offers you a robust way to do this.
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Scaling Data, Pipelines, and Interaction Features in Scikit-
Learn

Scaling Data

Compared to the synthetic data we were just working with, the case study
data is relatively large. If we want to use L1 regularization, then according
to the official documentation (https://scikit-
learn.org/stable/modules/linear_model.html#logistic-regression), we ought
to use the saga solver. However, this solver is not robust to unscaled
datasets. Hence, we need to be sure to scale the data. This is also a good
idea whenever doing regularization, so all the features are on the same scale
and are equally penalized by the regularization process. A simple way to
make sure that all the features have the same scale is to put them all through
the transformation of subtracting the minimum and dividing by the range
from minimum to maximum. This transforms each feature so that it will
have a minimum of 0 and a maximum of 1. To instantiate the
MinMaxScaler scaler that does this, we can use the following code:

from sklearn.preprocessing import MinMaxScaler

min_max_sc = MinMaxScaler()

Pipelines

Previously, we used a logistic regression model in the cross-validation loop.
However, now that we're scaling data, what new considerations are there?
The scaling is effectively "learned" from the minimum and maximum
values of the training data. After this, a logistic regression model would be
trained on data scaled by the extremes of the model training data. However,
we won't know the minimum and maximum values of the new, unseen data.
So, following the philosophy of making cross-validation an effective
indicator of model performance on unseen data, we need to use the
minimum and maximum values of the training data in each cross-validation
fold in order to scale the test data in that fold, before making predictions on

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression


the test data. Scikit-learn has the functionality to facilitate the combination
of several training and test steps for situations such as this: the Pipeline.
Our pipeline will consist of two steps: the scaler and the logistic regression
model. These can both be fit on the training data and then used to make
predictions on the test data. The process of fitting a pipeline is executed as a
single step in the code, so all the parts of the pipeline are fit at once in this
sense. Here is how a Pipeline is instantiated:

from sklearn.pipeline import Pipeline

scale_lr_pipeline = Pipeline(steps=[('scaler',
min_max_sc), \

                                    ('model',
lr)])

Interaction Features

Considering the case study data, do you think a logistic regression model
with all possible features would be overfit or underfit? You can think about
this from the perspective of rules of thumb, such as the "rule of 10," and the
number of features (17) versus samples (26,664) that we have.
Alternatively, you can consider all the work we've done so far with this
data. For instance, we've had a chance to visualize all the features and
ensure they make sense. Since there are relatively few features, and we
have relatively high confidence that they are high quality because of our
data exploration work, we are in a different situation than with the synthetic
data exercises in this chapter, where we had a large number of features
about which we knew relatively little. So, it may be that overfitting will be
less of an issue with our case study at this point, and the benefits of
regularization may not be significant.

In fact, it may be that we will underfit the model using only the 17 features
that came with the data. One strategy to deal with this is to engineer new
features. Some simple feature engineering techniques we've discussed
include interaction and polynomial features. Polynomials may not make
sense given the way in which some of the data has been encoded; for



example, -1  = 1, which may not be sensible for PAY_1. However, we may
wish to try creating interaction features to capture the relationships between
features. PolynomialFeatures can be used to create interaction
features only, without polynomial features. The example code is as follows:

make_interactions = PolynomialFeatures(degree=2,
\

                                       interactio
n_only=True, \

                                       include_bi
as=False)

Here, degree represents the degree of the polynomial features,
interaction_only takes a Boolean value (setting it to True indicates
that only interaction features will be created), and so does
include_bias, which adds an intercept to the model (the default value
is False, which is correct here as the logistic regression model will add an
intercept).
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Activity 4.01: Cross-Validation and Feature Engineering
with the Case Study Data

In this activity, we'll apply the knowledge of cross-validation and
regularization that we've learned in this chapter to the case study data. We'll
perform basic feature engineering. In order to estimate parameters for the
regularized logistic regression model for the case study data, which is larger
in size than the synthetic data that we've worked with, we'll use the saga
solver. In order to use this solver, and for the purpose of regularization, we'll
need to scale our data as part of the modeling process, leading us to the use
of Pipeline class in scikit-learn. Once you have completed the activity,
you should obtain an improved cross-validation test performance with the
use of interaction features, as shown in the following diagram:

Figure 4.24: Improved model test performance

Perform the following steps to complete the activity:



1. Select the features from the DataFrame of the case study data.

You can use the list of feature names that we've already created in this
chapter, but be sure not to include the response variable, which would
be a very good (but entirely inappropriate) feature!

2. Make a training/test split using a random seed of 24.

We'll use this going forward and reserve this test data as the unseen test
set. By specifying the random seed, we can easily create separate
notebooks with other modeling approaches using the same training
data.

3. Instantiate MinMaxScaler to scale the data.

4. Instantiate a logistic regression model with the saga solver, L1
penalty, and set max_iter to 1000 as we want the solver to have
enough iterations to find a good solution.

5. Import the Pipeline class and create a pipeline with the scaler and
the logistic regression model, using the names 'scaler' and
'model' for the steps, respectively.

6. Use the get_params and set_params methods to see how to view
the parameters from each stage of the pipeline and change them.

7. Create a smaller range of C values to test with cross-validation, as these
models will take longer to train and test with more data than our
previous exercise; we recommend C = [10 , 10, 1, 10 , 10 , 10 ].

8. Make a new version of the cross_val_C_search function called
cross_val_C_search_pipe. Instead of the model argument,
this function will take a pipeline argument. The changes inside the
function will be to set the C value using set_params(model__C =
<value you want to test>) on the pipeline, replacing the
model with the pipeline for the fit and predict_proba methods,

2 -1 -2 -3



and accessing the C value using pipeline.get_params()
['model__C'] for the printed status update.

9. Run this function as in the previous exercise, but using the new range of
C values, the pipeline you created, and the features and response
variable from the training split of the case study data.

You may see warnings here, or in later steps, regarding the non-
convergence of the solver; you could experiment with the tol or
max_iter options to try and achieve convergence, although the
results you obtain with max_iter = 1000 are likely to be sufficient.

10. Plot the average training and test ROC AUC across folds for each C
value.

11. Create interaction features for the case study data and confirm that the
number of new features makes sense.

12. Repeat the cross-validation procedure and observe the model
performance when using interaction features.

Note that this will take substantially more time, due to the larger
number of features, but it will probably take less than 10 minutes. So,
does the average cross-validation test performance improve with the
interaction features? Is regularization useful?

Note

The Jupyter notebook containing the Python code for this activity can
be found at https://packt.link/ohGgX. Detailed step-wise solution to this
activity can be found via this link.
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Summary

In this chapter, we introduced the final details of logistic regression and
continued to understand how to use scikit-learn to fit logistic regression
models. We gained more visibility into how the model fitting process works
by learning about the concept of a cost function, which is minimized by the
gradient descent procedure to estimate parameters during model fitting.

We also learned of the need for regularization by introducing the concepts
of underfitting and overfitting. In order to reduce overfitting, we saw how
to adjust the cost function to regularize the coefficients of a logistic
regression model using an L1 or L2 penalty. We used cross-validation to
select the amount of regularization by tuning the regularization
hyperparameter. To reduce underfitting, we saw how to do some simple
feature engineering with interaction features for the case study data.

We are now familiar with some of the most important concepts in machine
learning. We have, so far, only used a very basic classification model:
logistic regression. However, as you increase your toolbox of models that
you know how to use, you will find that the concepts of overfitting and
underfitting, the bias-variance trade-off, and hyperparameter tuning will
come up again and again. These ideas, as well as convenient scikit-learn
implementations of the cross-validation functions that we wrote in this
chapter, will help us through our exploration of more advanced prediction
methods.

In the next chapter, we will learn about decision trees, an entirely different
type of predictive model than logistic regression, and the random forests
that are based on them. However, we will use the same concepts that we
learned here, cross-validation and hyperparameter search, to tune these
models.
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5. Decision Trees and Random Forests

Overview

In this chapter, we'll shift our focus to another type of machine learning
model that has taken data science by storm in recent years: tree-based
models. In this chapter, after learning about trees individually, you'll then
learn how models made up of many trees, called random forests, can
improve the overfitting associated with individual trees. After reading this
chapter, you will be able to train decision trees for machine learning
purposes, visualize trained decision trees, and train random forests and
visualize the results.
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Introduction

In the last two chapters, we have gained a thorough understanding of the
workings of logistic regression. We have also gotten a lot of experience
with using the scikit-learn package in Python to create logistic regression
models.

In this chapter, we will introduce a powerful type of predictive model that
takes a completely different approach from the logistic regression model:
decision trees. Decision trees and the models based on them are some of
the most performant models available today for general machine learning
applications. The concept of using a tree process to make decisions is
simple, and therefore, decision tree models are easy to interpret. However, a
common criticism of decision trees is that they overfit to the training data.
In order to remedy this issue, researchers have developed ensemble
methods, such as random forests, that combine many decision trees to
work together and make better predictions than any individual tree could.

We will see that decision trees and random forests can improve the quality
of the predictive modeling of the case study data beyond what we have
achieved so far with logistic regression.
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Decision Trees

Decision trees and the machine learning models that are based on them, in
particular, random forests and gradient boosted trees, are fundamentally
different types of models than Generalized Linear Models (GLMs), such as
logistic regression. GLMs are rooted in the theories of classical statistics,
which have a long history. The mathematics behind linear regression was
originally developed at the beginning of the 19th century, by Legendre and
Gauss. Because of this, the normal distribution is also known as the
Gaussian distribution.

In contrast, while the idea of using a tree process to make decisions is
relatively simple, the popularity of decision trees as mathematical models
has come about more recently. The mathematical procedures that we
currently use for formulating decision trees in the context of predictive
modeling were published in the 1980s. The reason for this more recent
development is that the methods used to grow decision trees rely on
computational power – that is, the ability to crunch a lot of numbers quickly.
We take such capabilities for granted nowadays, but they weren't widely
available until more recently in the history of mathematics.

So, what is meant by a decision tree? We can illustrate the basic concept
using a practical example. Imagine that you are considering whether or not
to venture outdoors on a certain day. The only information you will base
your decision on involves the weather and, in particular, whether the sun is
shining and how warm it is. If it is sunny, your tolerance for cool
temperatures is increased, and you will go outside if the temperature is at
least 10 °C.

However, if it's cloudy, you require somewhat warmer temperatures and will
only go outside if the temperature is 15 °C or more. Your decision-making
process could be represented by the following tree:



Figure 5.1: A decision tree for deciding whether to go outside given the
weather

As you can see, decision trees have an intuitive structure and mimic the way
that logical decisions might be made by humans. Therefore, they are a highly
interpretable type of mathematical model, which can be a particularly
desirable property depending on the audience. For example, the client for a
data science project may be especially interested in a clear understanding of
how a model works. Decision trees are a good way of delivering on this
requirement, as long as their performance is sufficient.
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The Terminology of Decision Trees and Connections to
Machine Learning

Looking at the tree in Figure 5.1, we can begin to become familiar with
some of the terminology of decision trees. Because there are two levels of
decisions being made, based on cloud conditions at the first level and
temperature at the second level, we say that this decision tree has a depth of
two. Here, both nodes at the second level are temperature-based decisions,
but the kinds of decisions could be different within a level; for example, we
could base our decision on whether or not it was raining if it was not sunny.

In the context of machine learning, the quantities that are used to make
decisions at the nodes (in other words, to split the nodes) are the features.
The features in the example in Figure 5.1 are a binary categorical feature
for whether it's sunny, and a continuous feature for temperature. While we
have only illustrated each feature being used once in a given branch of the
tree, the same feature could be used multiple times in a branch. For
example, we may choose to go outside on a sunny day with a temperature
of at least 10 °C, but not if it were more than 40 °C – that's too hot! In this
case, node 4 of Figure 5.1 would be split on the condition "Is the
temperature greater than 40 °C?" where "stay in" is the outcome if the
answer is "yes," but "go outside" is the outcome if the answer is "no,"
meaning that the temperature is between 10 °C and 40 °C. Decision trees
are therefore able to capture non-linear effects of the features, as opposed to
a linear relationship that might assume that the hotter it was, the more likely
we would be to go outside, regardless of how hot it was.

Consider the way that trees are typically represented, such as in Figure 5.1.
The branches grow downward based on the binary decisions that can split
the nodes into two more nodes. These binary decisions can be thought of as
"if, then" rules. In other words, if a certain condition is met, do this,
otherwise, do something else. The decision being made in our example tree
is analogous to the concept of the response variable in machine learning. If
we made a decision tree for the case study problem of credit default, the



decisions would instead be predictions of the binary response values, which
are "this account defaults" or "this account doesn't default." A tree that
answers a binary yes/no type of question is a classification tree. However,
decision trees are quite versatile and can also be used for multiclass
classification and regression.

The terminal nodes at the bottom of the tree are called leaves, or leaf nodes.
In our example, the leaves are the final decisions as to whether to go outside
or stay in. There are four leaves on our tree, although you can imagine that
if the tree only had a depth of one, where we made our decision based only
on cloud conditions, there would be two leaves; and nodes 2 and 3 in
Figure 5.1 would be leaf nodes with "go outside" and "stay in" as the
decisions, respectively.

In our example, every node at every level before the final level is split. This
is not strictly necessary as you may go outside on any sunny day, regardless
of the temperature. In this case, node 2 will not be split, so this branch of
the tree will end on the first level with a "yes" decision. Your decision on
cloudy days, however, may involve temperature, meaning this branch can
extend to a further level. In the case that every node before the final level is
split, consider how quickly the number of leaves grows with the number of
levels.

For example, what would happen if we grew the decision tree in Figure 5.1
down through an additional level, perhaps with a wind speed feature, to
factor in wind chill for the four combinations of cloud conditions and
temperature. Each of the four nodes that are now leaves, nodes numbered
from four to seven in Figure 5.1, would be split into two more leaf nodes,
based on wind speed in each case. Then, there would be 4 × 2 = 8 leaf
nodes. In general, it should be clear that in a tree with n levels, where every
node before the final level is split, there will be 2n leaf nodes. This is
important to bear in mind as maximum depth is one of the
hyperparameters that you can set for a decision tree classifier in scikit-learn.
We'll now explore this in the following exercise.
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Exercise 5.01: A Decision Tree in Scikit-Learn

In this exercise, we will use the case study data to grow a decision tree, where we
specify the maximum depth. We'll also use some handy functionality to visualize
the decision tree, in the form of the graphviz package. Perform the following
steps to complete the exercise:

Note

The Jupyter notebook for this exercise can be found at https://packt.link/IUt7d.
Before you begin the exercise, please ensure that you have followed the
instructions in the Preface regarding setting up your environment and importing
the necessary libraries.

1. Load several of the packages that we've been using, and an additional one,
graphviz, so that we can visualize decision trees:

import numpy as np #numerical computation

import pandas as pd #data wrangling

import matplotlib.pyplot as plt #plotting package

#Next line helps with rendering plots

%matplotlib inline

import matplotlib as mpl #add'l plotting
functionality

mpl.rcParams['figure.dpi'] = 400 #high res
figures

import graphviz #to visualize decision trees

2. Load the cleaned case study data:

df =
pd.read_csv('../Data/Chapter_1_cleaned_data.csv')

https://packt.link/IUt7d


Note

The location of the cleaned data may differ depending on where you saved it.

3. Get a list of column names of the DataFrame:

features_response = df.columns.tolist()

4. Make a list of columns to remove that aren't features or the response
variable:

items_to_remove = ['ID', 'SEX', 'PAY_2',
'PAY_3',\

                   'PAY_4', 'PAY_5', 'PAY_6',\

                   'EDUCATION_CAT', 'graduate
school',\

                   'high school', 'none',\

                   'others', 'university']

5. Use a list comprehension to remove these column names from our list of
features and the response variable:

features_response = [item for item in
features_response if item not in items_to_remove]

features_response

This should output the list of features and the response variable:

['LIMIT_BAL',

'EDUCATION',

'MARRIAGE',

'AGE',

'PAY_1',

'BILL_AMT1',



'BILL_AMT2',

'BILL_AMT3',

'BILL_AMT4',

'BILL_AMT5',

'BILL_AMT6',

'PAY_AMT1',

'PAY_AMT2',

'PAY_AMT3',

'PAY_AMT4',

'PAY_AMT5',

'PAY_AMT6',

'default payment next month']

Now the list of features is prepared. Next, we will make some imports from
scikit-learn. We want to make a train/test split, which we are already familiar
with. We also want to import the decision tree functionality.

6. Run this code to make imports from scikit-learn:

from sklearn.model_selection import
train_test_split

from sklearn import tree

The tree library of scikit-learn contains decision tree-related classes.

7. Split the data into training and testing sets using the same random seed that
we have used throughout the book:

X_train, X_test, y_train, y_test = \

train_test_split(df[features_response[:-1]].value
s,

                 df['default payment next
month'].values,



                 test_size=0.2, random_state=24)

Here, we use all but the last element of the list to get the names of the
features, but not the response variable: features_response[:-1]. We
use this to select columns from the DataFrame, and then retrieve their values
using the .values method. We also do something similar for the response
variable, but specify the column name directly. In making the train/test split,
we've used the same random seed as in previous work, as well as the same
split size. This way, we can directly compare the work we will do in this
chapter with previous results. Also, we continue to reserve the same "unseen
test set" from the model development process.

Now we are ready to instantiate the decision tree class.

8. Instantiate the decision tree class by setting the max_depth parameter to 2:

dt = tree.DecisionTreeClassifier(max_depth=2)

We have used the DecisionTreeClassifier class because we have a
classification problem. Since we specified max_depth=2, when we grow
the decision tree using the case study data, the tree will grow to a depth of at
most 2. Let's now train this model.

9. Use this code to fit the decision tree model and grow the tree:

dt.fit(X_train, y_train)

This should display the following output:

DecisionTreeClassifier(max_depth=2)

Now that we have fit this decision tree model, we can use the graphviz
package to display a graphical representation of the tree.

10. Export the trained model in a format that can be read by the graphviz
package using this code:

dot_data = tree.export_graphviz(dt,

                                out_file=None,

                                filled=True,



                                rounded=True,

                                feature_names=\

                                features_response
[:-1],

                                proportion=True,

                                class_names=[

                                'Not defaulted',
'Defaulted'])

Here, we've provided a number of options for the .export_graphviz
method. First, we need to say which trained model we'd like to graph, which
is dt. Next, we say we don't want an output file: out_file=None.
Instead, we provide the dot_data variable to hold the output of this
method. The rest of the options are set as follows:

filled=True: Each node will be filled with a color.

rounded=True: The nodes will appear with rounded edges as opposed
to rectangles.

feature_names=features_response[:-1]: The names of the
features from our list will be used as opposed to generic names such as
X[0].

proportion=True: The proportion of training samples in each node will
be displayed (we'll discuss this more later).

class_names=['Not defaulted', 'Defaulted']: The name of
the predicted class will be displayed for each node.

What is the output of this method?

If you examine the contents of dot_data, you will see that it is a long text
string. The graphviz package can interpret this text string to create
a visualization.



11. Use the .Source method of the graphviz package to create an image
from dot_data and display it:

graph = graphviz.Source(dot_data)

graph

The output should look like this:

Figure 5.2: A decision tree plot from graphviz

The graphical representation of the decision tree in Figure 5.2 should be
rendered directly in your Jupyter notebook.

Note

Alternatively, you could save the output of .export_graphviz to disk by
providing a file path to the out_file keyword argument. To turn this
output file into an image file, for example, a .png file that you could use in
a presentation, you could run this code at the command line, substituting in
the filenames as appropriate: $ dot -Tpng



<exported_file_name> -o
<image_file_name_you_want>.png.

For further details on the options relating to .export_graphviz, you
should consult the scikit-learn documentation (https://scikit-
learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html).

The visualization in Figure 5.2 contains a lot of information about how the
decision tree was trained, and how it can be used to make predictions. We
will discuss the training process in more detail later, but suffice to say that
training a decision tree works by starting with all the training samples in the
initial node at the top of the tree, and then splitting these into two groups
based on a threshold in one of the features. The cut point is represented by
the inequality PAY_1 <= 1.5 in the first node.

All the samples where the value of the PAY_1 feature is less than or equal to
the cut point of 1.5 will be represented as True under this Boolean
condition. As shown in Figure 5.2, these samples get sorted into the left side
of the tree, following the arrow that says True next to it.

As you can see in the graph, each node that is split contains the splitting
criteria on the first line of text. The next line relates to gini, which we will
discuss shortly.

The following line contains information about the proportion of samples in
each node. In the top node, we are starting with all the samples (samples
= 100.0%). Following the first split, 89.5% of the samples get sorted into
the node on the left, while the remaining 10.5% go into the node on the right.
This information is shown directly in the visualization and reflects how the
training data was used to create the tree. Let's confirm this by examining the
training data.

12. To confirm the proportion of training samples where the PAY_1 feature is
less than or equal to 1.5, first identify the index of this feature in the list of
features_response[:-1] feature names:

features_response[:-1].index('PAY_1')

This code should output the following:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html
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13. Now, observe the shape of the training data:

X_train.shape

This should give you the following output:

(21331, 17)

To confirm the fraction of samples following the first split of the decision
tree, we need to know the proportion of samples, where the PAY_1 feature
meets the Boolean condition, that was used to make this split. To do this, we
can use the index of the PAY_1 feature in the training data, corresponding to
the index in the list of feature names, and the number of samples in the
training data, which is the number of rows we observed from .shape.

14. Use this code to confirm the proportion of samples after the first split of the
decision tree:

(X_train[:,4] <= 1.5).sum()/X_train.shape[0]

The output should be as follows:

0.8946134733486475

By applying a logical condition to the column of the training data
corresponding to the PAY_1 feature, and then taking the sum of this, we
calculated the number of samples meeting this condition. Then, by dividing
by the total number of samples, we converted this to a proportion. We can
see that the proportion we directly calculated from the training data is equal
to the proportion displayed in the left node following the first split in Figure
5.2.

Following the first split, the samples contained in each of the two nodes on
the first level are split again. As further splits are made beyond the first split,
smaller and smaller proportions of the training data will be assigned to any
given node in the subsequent levels of a branch, as can be seen in Figure 5.2.



Now we want to interpret the remaining lines of text in the nodes in Figure
5.2. The lines starting with value give the class fractions of the response
variable for the samples contained in each node. For example, in the top
node, we see value = [0.777, 0.223]. These are simply the class
fractions for the overall training set, which you can confirm in the following
step.

15. Calculate the class fraction in the training set with this code:

y_train.mean()

The output should be as follows:

0.223102526838873

This is equal to the second member of the pair of numbers following value
in the top node; the first number is simply one minus this, in other words, the
fraction of negative training samples. In each subsequent node, the class
fractions of the samples that are contained in that node are displayed. The
class fractions are also how the nodes are colored: those with a higher
proportion of the negative class than the positive class are orange, with
darker orange signifying higher proportions, while those with a higher
proportion of the positive class have a similar scheme using a blue color.

Finally, the line starting with class indicates how the decision tree would
make predictions from a given node, if that node were a leaf node. Decision
trees for classification make predictions by determining which leaf node a
sample will be sorted into, given the values of the features, and then
predicting the class of the majority of the training samples in that leaf node.
This strategy means that the tree structure and the class proportions in the
leaf nodes are pieces of information that are needed to make a prediction.

For example, if we've made no splits and we are forced to make a prediction
knowing nothing but the class fractions for the overall training data, we will
simply choose the majority class. Since most people don't default, the class
on the top node is Not defaulted. However, the class fractions in the
nodes of deeper levels are different, leading to different predictions. How
does scikit-learn decide the structure of the tree? We'll discuss the training
process in the following section.



Importance of max_depth

Recall that the only hyperparameter we specified in this exercise was
max_depth, that is, the maximum depth to which the decision tree can be
grown during the model training process. It turns out that this is one of the most
important hyperparameters. Without placing a limit on the depth, the tree will be
grown until one of the other limitations, specified by other hyperparameters, takes
effect. This can lead to very deep trees, with very many nodes. For example,
consider how many leaf nodes there could be in a tree with a depth of 20. This
would be 220 leaf nodes, which is over 1 million! Do we even have 1 million
training samples to sort into all these nodes? In this case, we do not. It would
clearly be impossible to grow such a tree, with every node before the final level
being split, using this training data. However, if we remove the max_depth
limit and rerun the model training of this exercise, observe the effect:

Figure 5.3: A portion of the decision tree grown with no maximum depth

Here, we have shown a portion of the decision tree that is grown with the default
options, which include max_depth=None, meaning no limit in terms of the
depth of the tree. The entire tree is about twice as wide as the portion shown here.
There are so many nodes that they only appear as very small orange or blue
patches; the exact interpretation of each node is not important as we are just
trying to illustrate how large trees can potentially be. It should be clear that
without hyperparameters to govern the tree-growing process, extremely large and
complex trees may result.
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Training Decision Trees: Node Impurity

At this point, you should have an understanding of how a decision tree
makes predictions using features, and the class fractions of training samples
in the leaf nodes. Now, we will learn how decision trees are trained. The
training process involves selecting features to split nodes on, and the
thresholds at which to make splits, for example PAY_1 <= 1.5 for the
first split in the tree of the previous exercise. Computationally, this means
the samples in each node must be sorted on the values of each feature to
consider a split for, and splits between each successive pair of sorted feature
values are considered. All features may be considered, or only a subset as we
will learn about shortly.

How Are the Splits Decided during the Training Process?

Given that the method of prediction is to take the majority class of a leaf
node, it makes sense that we'd like to find leaf nodes that are primarily from
one class or the other; choosing the majority class will be a more accurate
prediction, the closer a node is to containing just one class. In the perfect
case, the training data can be split so that every leaf node contains entirely
positive or entirely negative samples. Then, we will have a high level of
confidence that a new sample, once sorted into one of these nodes, will be
either positive or negative. In practice, this rarely, if ever, happens. However,
this illustrates the goal of training decision trees – that is, to make splits so
that the next two nodes after the split have a higher purity, or, in other
words, are closer to containing either only positive or only negative samples.

In practice, decision trees are actually trained using the inverse of purity, or
node impurity. This is some measure of how far the node is from having
100% of the training samples belonging to one class and is analogous to the
concept of a cost function, which signifies how far a given solution is from a
theoretical perfect solution. The most intuitive concept of node impurity is
the misclassification rate. Adopting a widely used notation (for example,
https://scikit-learn.org/stable/modules/tree.html) for the proportion of
samples in each node belonging to a certain class, we can define p  as themk

https://scikit-learn.org/stable/modules/tree.html


proportion of samples belonging to the k  class in the m  node. In a binary
classification problem, there are only two classes: k = 0 and k = 1. For a
given node m, the misclassification rate is simply the proportion of the less
common class in that node, since all these samples will be misclassified
when the majority class in that node is taken as the prediction.

Let's visualize the misclassification rate as a way to start thinking about how
decision trees are trained. Programmatically, we consider possible class
fractions, p , between 0.01 and 0.99 of the negative class, k = 0, in a node,
m, using NumPy's linspace function:

pm0 = np.linspace(0.01,0.99,99)

pm1 = 1 - pm0

Then, the fraction of the positive class for this node is one minus p :

Figure 5.4: Equation for calculating the positive class fraction for node
m0

Now, the misclassification rate for this node will be whatever the smaller
class fraction is, between p  and p . We can find the smaller of the
corresponding elements between two arrays with the same shape in NumPy
by using the minimum function:

misclassification_rate = np.minimum(pm0, pm1)

What does the misclassification rate look like plotted against the possible
class fractions of the negative class?

We can plot this using the following code:

mpl.rcParams['figure.dpi'] = 400

plt.plot(pm0, misclassification_rate,

th th

m0

m0

m0 m1



         label='Misclassification rate')

plt.xlabel('$p_{m0}$')

plt.legend()

You should obtain this graph:

Figure 5.5: The misclassification rate for a node

Now, it's clear that the closer the class fraction of the negative class, p , is
to 0 or 1, the lower the misclassification rate will be. How is this information
used when growing decision trees? Consider the process that might be
followed.

Every time a node is split when growing a decision tree, two new nodes are
created. Since the prediction from either of these new nodes is simply the
majority class, an important goal will be to reduce the misclassification rate.
Therefore, we will want to find a feature, from all the possible features, and
a value of this feature at which to make a cut point, so that the
misclassification rate in the two new nodes will be as low as possible when

m0



averaging over all the classes. This is very close to the actual process that is
used to train decision trees.

Continuing for the moment with the idea of minimizing the misclassification
rate, the decision tree training algorithm goes about node splitting by
considering all the features, although the algorithm may possibly only
consider a randomly selected subset if you set the max_features
hyperparameter to anything less than the total number of features. We'll
discuss possible reasons for doing this later. In either case, the algorithm
then considers each possible threshold for every candidate feature and
chooses the one that results in the lowest impurity, calculated as the average
impurity across the two possible new nodes, weighted by the number of
samples in each node. The node splitting process is shown in Figure 5.6.
This process is repeated until a stopping criterion of the tree, such as
max_depth, is reached:

Figure 5.6: How to select a feature and threshold in order to split a node

While the misclassification rate is an intuitive measure of impurity, it
happens that there are better measures that can be used to find splits during
the model training process. The two options that are available in scikit-learn
for the impurity calculation, which you can specify with the criterion
keyword argument, are the Gini impurity and the cross-entropy options.
Here, we will describe these options mathematically and show how they
compare with the misclassification rate.

Gini impurity is calculated for a node m using the following formula:



Figure 5.7: Equation for calculating Gini impurity

Here, the summation is taken over all classes. In the case of a binary
classification problem, there are only two classes, and we can write this
programmatically as follows:

gini = (pm0*(1-pm0)) + (pm1*(1-pm1))

Cross-entropy is calculated using this formula:

Figure 5.8: Equation for calculating cross-entropy

Using this code, we can calculate the cross-entropy:

cross_ent = -1*((pm0*np.log(pm0)) +
(pm1*np.log(pm1)))

In order to add Gini impurity and cross-entropy to our plot of
misclassification rate and see how they compare, we just need to include the
following lines of code after we plot the misclassification rate:

mpl.rcParams['figure.dpi'] = 400

plt.plot(pm0, misclassification_rate,\

         label='Misclassification rate')

plt.plot(pm0, gini, label='Gini impurity')

plt.plot(pm0, cross_ent, label='Cross entropy')

plt.xlabel('$p_{m0}$')



plt.legend()

The final plot should appear as follows:

Figure 5.9: The misclassification rate, Gini impurity, and cross-entropy

Note

If you're reading the print version of this book, you can download and
browse the color versions of some of the images in this chapter by visiting
the following link:

https://packt.link/mQ4Xn

Like the misclassification rate, both the Gini impurity and cross-entropy are
highest when the class fractions are equal at 0.5, and they decrease as the
node becomes purer – in other words, when they contain a higher proportion
of just one of the classes. However, the Gini impurity is somewhat steeper
than the misclassification rate in certain regions of the class fraction, which
enables it to more effectively find the best split. Cross-entropy looks even

https://packt.link/mQ4Xn


steeper. So, which one is better for your work? This is the kind of question
that does not have a concrete answer across all datasets. You should consider
both impurity metrics in a cross-validation search for hyperparameters in
order to determine the appropriate one. Note that in scikit-learn, Gini
impurity can be specified with the criterion argument using the
'gini' string, while cross-entropy is just referred to as 'entropy'.
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Features Used for the First Splits: Connections to Univariate
Feature Selection and Interactions

We can begin to get an impression of how important various features are to
decision tree models, based on the small tree shown in Figure 5.2. Notice
that PAY_1 was the feature chosen for the first split. This means that it was
the best feature in terms of decreasing node impurity on the node containing
all of the training samples. Recall our experience with univariate feature
selection in Chapter 3, Details of Logistic Regression and Feature
Exploration, where PAY_1 was the top-selected feature from the F-test. So,
the appearance of this feature in the first split of the decision tree makes
sense given our previous analysis.

In the second level of the tree, there is another split on PAY_1, as well as a
split on BILL_AMT_1. BILL_AMT_1 was not listed among the top
features in univariate feature selection. However, it may be that there is an
important interaction between BILL_AMT_1 and PAY_1, which would not
be found up by univariate methods. In particular, from the splits chosen by
the decision tree, it seems that those accounts with both a value of 2 or
greater for PAY_1, and a BILL_AMT_1 of greater than 568, are especially
at risk of default. This combined effect of PAY_1 and BILL_AMT_1 is an
interaction and may also be why we were able to improve logistic
regression performance by including interaction terms in the activity of the
previous chapter.
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Training Decision Trees: A Greedy Algorithm

There is no guarantee that a decision tree trained by the process described
previously will be the best possible decision tree for finding leaf nodes with
the lowest impurity. This is because the algorithm used to train decision
trees is what is called a greedy algorithm. In this context, this means that at
each opportunity to split a node, the algorithm is looking for the best
possible split at that point in time, without any regard for the fact that the
opportunities for later splits are being affected.

For example, consider the following hypothetical scenario: the best initial
split for the training data of the case study involves PAY_1, as we've seen
in Figure 5.2. But what if we instead split on BILL_AMT_1, and then make
subsequent splits on PAY_1 in the next level? Even though the initial split
on BILL_AMT_1 is not the best one available at first, it is possible that the
end result will be better if the tree is grown this way. The algorithm has no
way of finding solutions like this if they exist, since it only considers the
best possible split at each node and not possible future splits.

The reason why we still use greedy tree-growing algorithms is that it takes
substantially longer to consider all possible splits in a way that enables the
truly optimal tree to be found. Despite this shortcoming of the decision tree
training process, there are methods that you can use to reduce the possible
harmful effects of the greedy algorithm. Instead of searching for the best
split at each node, the splitter keyword argument to the decision tree
class can be set to random in order to choose a random feature to make a
split on. However, the default is best, which searches all features for the
best split. Another option, which we've already discussed, is to limit the
number of features that will be searched at each splitting opportunity using
the max_features keyword. Finally, you can also use ensembles of
decision trees, such as random forests, which we will describe shortly. Note
that all these options, in addition to possibly avoiding the ill-effects of the
greedy algorithm, are also options for addressing the overfitting that
decision trees are often criticized for.
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Training Decision Trees: Different Stopping Criteria and
Other Options

We have already reviewed using the max_depth parameter as a limit to
how deep a tree will grow. However, there are several other options available
in scikit-learn as well. These are mainly related to how many samples are
present in a leaf node, or how much the impurity can be decreased by further
splitting nodes. As discussed previously, you may be limited by the size of
your dataset in terms of how deep you can grow a tree. And it may not make
sense to grow trees deeper, especially if the splitting process is no longer
finding nodes with substantially higher purity.

We summarize all of the keyword arguments that you can supply to the
DecisionTreeClassifier class in scikit-learn here:



Figure 5.10: The complete list of options for the decision tree classifier in
scikit-learn
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Using Decision Trees: Advantages and Predicted
Probabilities

While decision trees are simple in concept, they have several practical
advantages.

No Need to Scale Features

Consider the reasons why we needed to scale features for logistic regression.
One reason is that, for some of the solution algorithms based on gradient
descent, it is necessary that the features are on the same scale in order to
quickly find a minimum of the cost function. Another is that when we are
using L1 or L2 regularization to penalize coefficients, all the features must
be on the same scale so that they are penalized equally. With decision trees,
the node splitting algorithm considers each feature individually and,
therefore, it doesn't matter whether the features are on the same scale.

Non-Linear Relationships and Interactions

Because each successive split in a decision tree is performed on a subset of
the training samples resulting from the previous split(s), decision trees can
describe complex non-linear relationships of a single feature, as well as
interactions between features. Consider our discussion previously in the
Features Used for the First Splits: Connections to Univariate Feature
Selection and Interactions section. Also, as a hypothetical example with
synthetic data, consider the following dataset for classification:



Figure 5.11: An example classification dataset, with the classes shown in
red and blue (if reading in black and white, please refer to the GitHub

repository for a color version of this figure; the blue dots are on the
inside circle)

We know from Chapter 3, Details of Logistic Regression and Feature
Exploration, that logistic regression has a linear decision boundary. So, how
do you think logistic regression would cope with a dataset like that shown in
Figure 5.11? Where would you draw a line to separate the blue and red
classes? It should be clear that without engineering additional features, a
logistic regression is not likely to be a good classifier for this data. Now
think about the set of "if, then" rules of a decision tree, which could be used
with the features represented on the x and y axes of Figure 5.11. Do you
think a decision tree will be effective with this data?

Here, we plot in the background the predicted probabilities of class
membership using red and blue, for both of these models:



Figure 5.12: Decision tree and logistic regression predictions

In Figure 5.12, the predicted probabilities for both models are colored so
that darker red corresponds to a higher predicted probability for the red
class, and darker blue for the blue class. We can see that the decision tree can
isolate the blue class in the middle of the circle of red points. This is
because, by using thresholds for the x and y coordinates in the node-splitting
process, a decision tree can mathematically model the fact that the location
of the blue and red classes depends on both the x and y coordinates together
(interactions), and that the likelihood of either class is not a linearly
increasing or decreasing function of x or y (non-linearities). Consequently,
the decision tree approach is able to get most classifications right.

Note

The code to generate Figures 5.11 and 5.12 can be found in the
reference notebook: https://packt.link/9W4WN.

However, the logistic regression has a linear decision boundary, which will
be the straight line between the lightest blue and red patches in the
background. The logistic regression decision boundary goes right through
the middle of the data and doesn't provide a useful classifier. This shows the
power of decision trees "out of the box," without the need for engineering
non-linear or interaction features.

Predicted Probabilities

https://packt.link/9W4WN


We know that logistic regression produces probabilities as raw output.
However, a decision tree makes predictions based on the majority class of
the leaf nodes. So, where would predicted probabilities come from, like
those shown in Figure 5.12? In fact, decision trees do offer the
.predict_proba method in scikit-learn to calculate predicted
probabilities. The probability is based on the proportion of the majority class
in the leaf node used for a given prediction. If 75% of the samples in a leaf
node belonged to the positive class, for example, the prediction for that node
would be the positive class and the predicted probability will be 0.75. The
predicted probabilities from decision trees are not considered to be as
statistically rigorous as those from generalized linear models, but they are
still commonly used to measure the performance of models by methods that
depend on varying the threshold for classification, such as the ROC curve or
the precision-recall curve.

Note

We are focusing here on decision trees for classification because of the
nature of the case study. However, decision trees can also be used for
regression, making them a versatile method. The tree-growing process is
similar for regression as it is for classification, except that instead of seeking
to reduce node impurity, a regression tree seeks to minimize other metrics
such as the Mean Squared Error (MSE) or Mean Absolute Error (MAE) of
the predictions, where the prediction for a node may be the average or
median of the samples in the node, respectively.

OceanofPDF.com

https://oceanofpdf.com/


A More Convenient Approach to Cross-Validation

In Chapter 4, The Bias-Variance Trade-Off, we gained a deep understanding
of cross-validation by writing our own function to do it, using the KFold
class to generate the training and testing indices. This was helpful to get a
thorough understanding of how the process works. However, scikit-learn
offers a convenient class that can do more of the heavy lifting for us:
GridSearchCV. GridSearchCV can take as input a model that we want
to find optimal hyperparameters for, such as a decision tree or a logistic
regression, and a "grid" of hyperparameters that we want to perform cross-
validation over. For example, in a logistic regression, we may want to get the
average cross-validation score over all the folds for different values of the
regularization parameter, C. With decision trees, we may want to explore
different depths of trees.

You can also search multiple parameters at once, for example, if we wanted
to try different depths of trees and different numbers of max_features to
consider at each node split.

GridSearchCV does what is called an exhaustive grid search over all the
possible combinations of parameters that we supply. This means that if we
supplied five different values for each of the two hyperparameters, the cross-
validation procedure would be run 5 x 5 = 25 times. If you are searching
many values of many hyperparameters, the number of cross-validation runs
can grow very quickly. In these cases, you may wish to use
RandomizedSearchCV, which searches a random subset of
hyperparameter combinations from the universe of all possibilities in the
grid you supply.

GridSearchCV can speed up your work by streamlining the cross-
validation process. You should be familiar with the concepts of cross-
validation from the previous chapter, so we proceed directly to listing all the
options available for GridSearchCV.



In the following exercise, we will get hands-on practice using
GridSearchCV with the case study data, in order to search
hyperparameters for a decision tree classifier. Here are the options for
GridSearchCV:

Figure 5.13: The options for GridSearchCV

In the following exercise, we'll make use of the standard error of the mean
to create error bars. We'll average the model performance metric across the
testing folds, and the error bars will help us visualize how variable model
performance is across the folds.



The standard error of the mean is also known as the standard deviation of the
sampling distribution of the sample mean. That is a long name, but the
concept isn't too complicated. The idea behind this is that the population of
model performance metrics that we wish to make error bars for represents
one possible way of sampling a theoretical, larger population of similar
samples, for example if more data were available and we used it to have
more testing folds. If we could take repeated samples from the larger
population, each of these sampling events would result in a slightly different
mean (the sample mean). Constructing a distribution of these means (the
sampling distribution of the sample mean) from repeated sampling events
would allow us to know the variance of this sampling distribution, which
would be useful as a measure of uncertainty in the sample mean. It turns out

this variance (let's call it , where  indicates this is the variance of the
sample mean) depends on the number of observations in our sample (n): it is
inversely proportional to sample size, but also directly proportional to the

variance of the larger, unobserved population . If you're
working with standard deviation of the sample mean, simply take the square

root of both sides: . While we don't know the true value of 
since we don't observe the theoretical population, we can estimate it with the
variance of the population of testing folds that we do observe.

This is a key concept in statistics called the Central Limit Theorem.
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Exercise 5.02: Finding Optimal Hyperparameters for a Decision
Tree

In this exercise, we will use GridSearchCV to tune the hyperparameters for a
decision tree model. You will learn about a convenient way of searching different
hyperparameters with scikit-learn. Perform the following steps to complete
the exercise:

Note

Before you begin this exercise, you need import the necessary packages and load
the cleaned dataframe. You can refer to the following Jupyter notebook for the
prerequisite steps: https://packt.link/SKuoB.

1. Import the GridSearchCV class with this code:

from sklearn.model_selection import GridSearchCV

The next step is to define the hyperparameters that we want to search using
cross-validation. We will find the best maximum depth of tree, using the
max_depth parameter. Deeper trees have more node splits, which partition
the training set into smaller and smaller subspaces using the features. While
we don't know the best maximum depth ahead of time, it is helpful to
consider some limiting cases when considering the range of parameters to
use for the grid search.

We know that one is the minimum depth, consisting of a tree with just one
split. As for the largest depth, you can consider how many samples you have
in your training data, or, more appropriately in this case, how many samples
will be in the training fold for each split of the cross-validation. We will
perform a 4-fold cross-validation like we did in the previous chapter. So,
how many samples will be in each training fold, and how does this relate to
the depth of the tree?

2. Find the number of samples in the training data using this code:

X_train.shape

https://packt.link/SKuoB


The output should be as follows:

(21331, 17)

With 21,331 training samples and 4-fold cross-validation, there will be
three-fourths of the samples, or about 16,000 samples, in each training fold.

What Does This Mean for How Deep We May Wish to Grow Our Tree?

A theoretical limitation is that we need at least one sample in each leaf. From
our discussion regarding how the depth of the tree relates to the number of
leaves, we know a tree that splits at every node before the last level, with n
levels, has 2n leaf nodes. Therefore, a tree with L leaf nodes has a depth of
approximately log2(L). In the limiting case, if we grow the tree deep enough
so that every leaf node has one training sample for a given fold, the depth
will be log2(16,000) ≈ 14. So, 14 is the theoretical limit to the depth of a tree
that we could grow in this case.

Practically speaking, you will probably not want to grow a tree this deep, as
the rules used to generate the decision tree will be very specific to the
training data and the model is likely to be overfit. However, this gives you
an idea of the range of values we may wish to consider for the max_depth
hyperparameter. We will explore a range of depths from 1 up to 12.

3. Define a dictionary with the key being the hyperparameter name and the
value being the list of values of this hyperparameter that we want to search
in cross-validation:

params = {'max_depth':[1, 2, 4, 6, 8, 10, 12]}

In this case, we are only searching one hyperparameter. However, you could
define a dictionary with multiple key-value pairs to search over multiple
hyperparameters simultaneously.

4. If you are running all the exercises for this chapter in a single notebook, you
can reuse the decision tree object, dt, from earlier. If not, you need to create
a decision tree object for the hyperparameter search:

dt = tree.DecisionTreeClassifier()



Now we want to instantiate the GridSearchCV class.

5. Instantiate the GridSearchCV class using these options:

cv = GridSearchCV(dt, param_grid=params,
scoring='roc_auc',

                  n_jobs=None, refit=True, cv=4,
verbose=1,

                  pre_dispatch=None,
error_score=np.nan,

                  return_train_score=True)

Note here that we use the ROC AUC metric (scoring='roc_auc'), that
we do 4-fold cross-validation (cv=4), and that we calculate training scores
(return_train_score=True) to assess the bias-variance trade-off.

Once the cross-validation object is defined, we can simply use the .fit
method on it as we would with a model object. This encapsulates essentially
all the functionality of the cross-validation loop we wrote in the previous
chapter.

6. Perform 4-fold cross-validation to search for the optimal maximum depth
using this code:

cv.fit(X_train, y_train)

The output should be as follows:

Figure 5.14: The cross-validation fitting output

All the options that we specified are printed as output. Additionally, there is
some output information regarding how many cross-validation fits were



performed. We had 4 folds and 7 hyperparameters, meaning 4 x 7 = 28 fits
are performed. The amount of time this took is also displayed. You can
control how much output you get from this procedure with the verbose
keyword argument; larger numbers mean more output.

Now it's time to examine the results of the cross-validation procedure.
Among the methods that are available on the fitted GridSearchCV object
is .cv_results_. This is a dictionary containing the names of results as
keys and the results themselves as values. For example, the
mean_test_score key holds the average testing score across the folds
for each of the seven hyperparameters. You could directly examine this
output by running cv.cv_results_ in a code cell. However, this is not
easy to read. Dictionaries with this kind of structure can be used
immediately in the creation of a pandas DataFrame, which makes looking at
the results a little easier.

7. Run the following code to create and examine a pandas DataFrame of cross-
validation results:

cv_results_df = pd.DataFrame(cv.cv_results_)

cv_results_df

The output should look like this:

Figure 5.15: First several columns of the cross-validation results
DataFrame



The DataFrame has one row for each combination of hyperparameters in the
grid. Since we are only searching one hyperparameter here, there is one row
for each of the seven values that we searched for. You can see a lot of output
for each row, such as the mean and standard deviation of the time in seconds
that each of the four folds took for both training (fitting) and testing
(scoring). The hyperparameter values that were searched are also shown. In
Figure 5.16, we can see the ROC AUC score for the testing data of the first
fold (index 0). What are the rest of the columns in the results DataFrame?

8. View the names of the remaining columns in the results DataFrame using
this code:

cv_results_df.columns

The output should be as follows:

Index(['mean_fit_time', 'std_fit_time',\

       'mean_score_time', 'std_score_time',\

       'param_max_depth', 'params',\

       'split0_test_score', 'split1_test_score',\

       'split2_test_score', 'split3_test_score',\

       'mean_test_score', 'std_test_score',\

       'rank_test_score', 'split0_train_score',\

       'split1_train_score',
'split2_train_score',\

       'split3_train_score', 'mean_train_score',\

       'std_train_score'],

      dtype='object')

The columns in the cross-validation results DataFrame include the testing
scores for each fold, their average and standard deviation, and the same
information for the training scores.

Generally speaking, the "best" combination of hyperparameters is that with
the highest average testing score. This is an estimation of how well the



model, fitted using these hyperparameters, could perform when scored on
new data. Let's make a plot showing how the average testing score varies
with the max_depth hyperparameter. We will also show the average
training scores on the same plot, to see how bias and variance change as we
allow deeper and more complex trees to be grown during model fitting.

We include the standard errors of the 4-fold training and testing scores as
error bars, using the Matplotlib errorbar function. This gives you an
indication of how variable the scores are across the folds.

9. Execute the following code to create an error bar plot of training and testing
scores for each value of max_depth that was examined in cross-validation:

ax = plt.axes()

ax.errorbar(cv_results_df['param_max_depth'],

            cv_results_df['mean_train_score'],

            yerr=cv_results_df['std_train_score']
/np.sqrt(4),

            label='Mean $\pm$ 1 SE training
scores')

ax.errorbar(cv_results_df['param_max_depth'],

            cv_results_df['mean_test_score'],

            yerr=cv_results_df['std_test_score']/
np.sqrt(4),

            label='Mean $\pm$ 1 SE testing
scores')

ax.legend()

plt.xlabel('max_depth')

plt.ylabel('ROC AUC')

The plot should appear as follows:



Figure 5.16: An error bar plot of training and testing scores across the four
folds

Note that standard errors are calculated as the standard deviation divided by the
square root of the number of folds. The standard errors of the training and testing
scores are shown as vertical lines at each value of max_depth that was tried;
the distance above and below the average score is 1 standard error. Whenever
making error bar plots, it's best to ensure that the units of the error measurement
are the same as the units of the y axis. In this case they are, since standard error
has the same units as the underlying data, as opposed to variance, for example,
which has squared units.

The error bars indicate how variable the scores are across folds. If there were a
large amount of variation across the folds, it would indicate that the nature of the
data across the folds was different in a way that affected the ability of our model
to describe it. This could be concerning because it would indicate that we may not
have enough data to train a model that would reliably perform on new data.
However, in our case here, there is not much variability between the folds, so this
is not an issue.

What about the general trends of the training and testing scores across the
different values of max_depth? We can see that as we grow deeper and deeper
trees, the model fits the training data better and better. As noted previously, if we



grew trees deep enough so that each leaf node had just one training sample, we
would create a model that is very specific to the training data. In fact, it would fit
the training data perfectly. We could say that such a model had extremely high
variance.

But this performance on the training set does not necessarily translate over to the
testing set. In Figure 5.16 it's apparent that increasing max_depth only
increases testing scores up to a point, after which deeper trees in fact have lower
testing performance. This is another example of how we can leverage the bias-
variance trade-off to create a better predictive model – similar to how we used a
regularized logistic regression. Shallower trees have more bias, since they are not
fitting the training data as well. But this is fine because if we accept some bias,
we will have better performance on the testing data, which is the metric we
ultimately care about.

In this case, we would select max_depth = 6. You could also perform a more
thorough search by trying every integer between 2 and 12, instead of going by 2s,
as we've done here. In general, it is a good idea to perform as thorough a search
of parameter space as you can, up to the limits of the computational time that you
have. In this case, it would lead to the same result.

Comparison between Models

At this point, we've calculated a 4-fold cross-validation of several different
machine learning models on the case study data. So, how are we doing? What's
our best so far? In the last chapter, we got an average testing ROC AUC of 0.718
with logistic regression, and 0.740 by engineering interaction features in a logistic
regression. Here, with a decision tree, we can achieve 0.745. So, we are making
gains in model performance. Now, let's, explore another type of model, based on
decision tress, to see whether we can push performance even higher.
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Random Forests: Ensembles of Decision Trees

As we saw in the previous exercise, decision trees are prone to overfitting.
This is one of the principal criticisms of their usage, despite the fact that
they are highly interpretable. We were able to limit this overfitting, to an
extent, however, by limiting the maximum depth to which the tree could be
grown.

Building on the concepts of decision trees, machine learning researchers
have leveraged multiple trees as the basis for more complex procedures,
resulting in some of the most powerful and widely used predictive models.
In this chapter, we will focus on random forests of decision trees. Random
forests are examples of what are called ensemble models, because they are
formed by combining other, simpler models. By combining the predictions
of many models, it is possible to improve upon the deficiencies of any
given one of them. This is sometimes called combining many weak learners
to make a strong learner.

Once you understand decision trees, the concept behind random forests is
fairly simple. That is because random forests are just ensembles of many
decision trees; all the models in this kind of ensemble have the same
mathematical form. So, how many decision tree models will be included in
a random forest? This is one of the hyperparameters, n_estimators, that
needs to be specified when building a random forest model. Generally
speaking, the more trees, the better. As the number of trees increases, the
variance of the overall ensemble will decrease. This should result in the
random forest model having better generalization to new data, which will
be reflected in increased testing scores. However, there will be a point of
diminishing returns after which increasing the number of trees does not
result in a substantial improvement in model performance.

So, how do random forests reduce the high variance (overfitting) issue that
affects decision trees? The answer to this question lies in what is different
about the different trees in the forest. There are two main ways in which the
trees are different, one of which we are already familiar with:



The number of features considered at each split

The training samples used to grow different trees

The Number of Features Considered at Each Split

We are already familiar with this option from the
DecisionTreeClassifier class: max_features. In our previous
usage of this class, we left max_features at its default value of None,
which meant that all features were considered at each split. By using all the
features to fit the training data, overfitting is possible. By limiting the
number of features considered at each split, some of the decision trees in a
random forest will potentially find better splits. This is because, although
they are still greedily searching for the best split, they are doing it with a
limited selection of features. This may make certain splits possible later in
the tree that may not have been found if all features were being searched at
each split.

There is a max_features option in the RandomForestClassifier
class in scikit-learn just as there is for the DecisionTreeClassifier
class and the options are similar. However, for the random forest, the
default setting is 'auto', which means the algorithm will only search a
random selection of the square root of the number of possible features at
each split, for example, a random selection of √9 = 3 features from a total of
9 possible features. Because each tree in the forest will likely choose
different random selections of features to split as the trees are being grown,
the trees in the forest will not be the same.

The Samples Used to Grow Different Trees

The other way that the trees in a random forest differ from each other is that
they are usually grown with different training samples. To do this, a
statistical procedure known as bootstrapping is used, which means
generating new synthetic datasets from the original data. The synthetic
datasets are created by randomly selecting samples from the original dataset
using replacement. Here, "replacement" means that if we select a certain



sample, we will continue to consider it for selection, that is, it is "replaced"
in the original dataset after we've sampled it. The number of samples in the
synthetic datasets are the same as those in the original dataset, but some
samples may be repeated because of replacement, while others may not be
present at all.

The procedure of using random sampling to create synthetic datasets, and
training models on them separately, is called bagging, which is short for
bootstrapped aggregation. Bagging can, in fact, be used with any machine
learning model, not just decision trees, and scikit-learn offers functionality
to do this for both classification (BaggingClassifier) and regression
(BaggingRegressor) problems. In the case of random forest, bagging
is turned on by default and the bootstrap option is set to True. But if
you want all the trees in the forest to be grown using all of the training data,
you can set this option to False.

Now you should have a good understanding of what a random forest is. As
you can see, if you are already familiar with decision trees, understanding
random forests does not involve much additional knowledge. A reflection of
this fact is that the hyperparameters available for the
RandomForestClassifier class in scikit-learn are mostly the same as
those for the DecisionTreeClassifier class.

In addition to n_estimators and bootstrap, which we discussed
previously, there are only two new options beyond what's available for
decision trees:

oob_score, a bool: This option controls whether or not to calculate
an Out Of Bag (OOB) score for each tree. This can be thought of as a
testing score, where the samples that were not selected by the bagging
procedure to grow a given tree are used to assess the model
performance of that tree. Here, use True to calculate the OOB score
or False (the default) not to.



warm_start, a bool: This is False by default – if you set this to
True, then reusing the same random forest model object will cause
additional trees to be added to the already generated forest.

max_samples, an int or float: Controls how many samples are
used to train each tree in the forest, when using the bootstrapping
procedure. The default is to use the same number as the original
dataset.

Other Kinds of Ensemble Models

Random forest, as we now know, is an example of a bagging ensemble.
Another kind of ensemble is a boosting ensemble. The general idea of
boosting is to use successive new models of the same type and to train them
on the errors of previous models. This way, successive models learn where
earlier models didn't do well and correct these errors. Boosting has enjoyed
successful application with decision trees and is available in scikit-learn and
another popular Python package called XGBoost. We will discuss boosting
in the next chapter.

Stacking ensembles are a somewhat more advanced kind of ensemble,
where the different models (estimators) within the ensemble do not need to
be of the same type as they do in bagging and boosting. For example, you
could build a stacking ensemble with a random forest and a logistic
regression. The predictions of the different members of the ensemble are
combined for a final prediction using yet another model (the stacker),
which considers the predictions of the stacked models as features.
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Random Forest: Predictions and Interpretability

Since a random forest is just a collection of decision trees, somehow the
predictions of all those trees must be combined to create the prediction of
the random forest.

After model training, classification trees will take an input sample and
produce a predicted class, for example, whether or not a credit account in
our case study problem will default. One intuitive approach to combining
the predictions of these trees into the ultimate prediction of the forest is to
take a majority vote. That is, whatever the most common prediction of all
the trees is becomes the prediction of the forest, for a given sample. This
was the approach taken in the publication first describing random forests
(https://scikit-learn.org/stable/modules/ensemble.html#forest). However,
scikit-learn uses a somewhat different approach: adding up the predicted
probabilities for each class and then choosing the one with the highest
probability sum. This captures more information from each tree than just
the predicted class.

Interpretability of Random Forests

One of the main advantages of decision trees is that it is straightforward to
see how any individual prediction is made. You can trace the decision path
for any sample through the series of "if, then" rules used to make a
prediction and know exactly how it came to have that prediction. By
contrast, imagine that you have a random forest consisting of 1,000 trees.
This would mean there are 1,000 sets of rules like this, which are much
harder to communicate to human beings than one set of rules!

That being said, there are various methods that can be used to understand
how random forests make predictions. A simple way to interpret how a
random forest works, and which is available in scikit-learn, is to observe the
feature importances. Feature importances of a random forest are a
measure of how useful each of the features was when growing the trees in
the forest. This usefulness is measured by a combination of the fraction of

https://scikit-learn.org/stable/modules/ensemble.html#forest


training samples that were split using each feature, and the decrease in node
impurity that resulted.

Because of the feature importance calculation, which can be used to rank
features by how impactful they are within the random forest model, random
forests can also be used for feature selection.
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Exercise 5.03: Fitting a Random Forest

In this exercise, we will extend our efforts with decision trees by using the
random forest model with cross-validation on the training data from the case
study. We will observe the effect of increasing the number of trees in the forest
and examine the feature importance that can be calculated using a random forest
model. Perform the following steps to complete the exercise:

Note

The Jupyter notebook for this exercise can be found at https://packt.link/VSz2T.
This notebook contains the prerequisite steps of importing the necessary libraries
and loading the cleaned dataframe. Please execute these steps before you begin
this exercise.

1. Import the random forest classifier model class as follows:

from sklearn.ensemble import
RandomForestClassifier

2. Instantiate the class using these options:

rf = RandomForestClassifier(n_estimators=10,\

                            criterion='gini',\

                            max_depth=3,\

                            min_samples_split=2,\

                            min_samples_leaf=1,\

                            min_weight_fraction_l
eaf=0.0,\

                            max_features='auto',\

                            max_leaf_nodes=None,\

                            min_impurity_decrease
=0.0,\

https://packt.link/VSz2T


                            min_impurity_split=No
ne,\

                            bootstrap=True,\

                            oob_score=False,\

                            n_jobs=None,

                            random_state=4,\

                            verbose=0,\

                            warm_start=False,\

                            class_weight=None)

For this exercise, we'll use mainly the default options. However, note that we
will set max_depth = 3. Here, we are only going to explore the effect of
using different numbers of trees, which we will illustrate with relatively
shallow trees for the sake of shorter runtimes. To find the best model
performance, we'd typically try more trees and deeper depths of trees.

We also set random_state for consistent results across runs.

3. Create a parameter grid for this exercise in order to search the numbers of
trees, ranging from 10 to 100 by 10s:

rf_params_ex =
{'n_estimators':list(range(10,110,10))}

We use Python's range() function to create an iterator for the integer
values we want, and then convert them to a list using list().

4. Instantiate a grid search cross-validation object for the random forest model
using the parameter grid from the previous step. Otherwise, you can use the
same options that were used for the cross-validation of the decision tree:

cv_rf_ex = GridSearchCV(rf,
param_grid=rf_params_ex,

                        scoring='roc_auc',
n_jobs=None,



                        refit=True, cv=4,
verbose=1,

                        pre_dispatch=None,
error_score=np.nan,

                        return_train_score=True)

5. Fit the cross-validation object as follows:

cv_rf_ex.fit(X_train, y_train)

The fitting procedure should output the following:

Figure 5.17: The output from the cross-validation of the random forest
across different numbers of trees

You may have noticed that, although we are only cross-validating over 10
hyperparameter values, comparable to the 7 values that we examined for the
decision tree in the previous exercise, this cross-validation took noticeably
longer. Consider how many trees we are growing in this case. For the last
hyperparameter, n_estimators = 100, we have grown a total of 400
trees across all the cross-validation splits.

How long has model fitting taken across the various numbers of trees that
we just tried? What gains in terms of cross-validation testing performance
have we made by using more trees? These are good things to examine using
plots. First, we'll pull the cross-validation results out into a pandas
DataFrame, as we've done before.

6. Put the cross-validation results into a pandas DataFrame:

cv_rf_ex_results_df =
pd.DataFrame(cv_rf_ex.cv_results_)



You can examine the whole DataFrame in the accompanying Jupyter
notebook. Here, we move directly to creating plots of the quantities of
interest. We'll make a line plot, with symbols, of the mean fit time across the
folds for each hyperparameter, contained in the mean_fit_time column,
as well as an error bar plot of testing scores, which we've already done for
decision trees. Both plots will be against the number of trees on the x axis.

7. Create two subplots of the mean training time and mean testing scores with
standard error:

fig, axs = plt.subplots(nrows=1, ncols=2,
figsize=(6, 3))

axs[0].plot(cv_rf_ex_results_df['param_n_estimato
rs'],

            cv_rf_ex_results_df['mean_fit_time'],

            '-o')

axs[0].set_xlabel('Number of trees')

axs[0].set_ylabel('Mean fit time (seconds)')

axs[1].errorbar(cv_rf_ex_results_df['param_n_esti
mators'],

                cv_rf_ex_results_df['mean_test_sc
ore'],

                yerr=cv_rf_ex_results_df['std_tes
t_score']/np.sqrt(4))

axs[1].set_xlabel('Number of trees')

axs[1].set_ylabel('Mean testing ROC AUC $\pm$ 1
SE ')

plt.tight_layout()

Here, we've used plt.subplots to create two axes at once, within a
figure, in a one-row-by-two-column configuration. We then access the axes
objects by indexing the array of axs axes returned from this operation in
order to create plots.



The output should look similar to this plot:

Figure 5.18: The mean fitting time and testing scores for different
numbers of trees in the forest

Note

Your results may differ due to the differences in the platform or if you set a
different random seed.

There are several things to note regarding these visualizations. First of all,
we can see that by using a random forest, we have increased model
performance on the cross-validation testing folds above that of any of our
previous efforts. While we haven't made an attempt to tune the random forest
hyperparameters to achieve the best model performance we can, this is a
promising result and indicates that a random forest will be a valuable
addition to our modeling efforts.

However, along with these higher model testing scores, notice that there is
also more variability between the folds than what we saw with the decision
tree; this variability is visible as larger standard errors in model testing
scores across the folds. While this indicates that there is a wider range in
model performance that might be expected from using this model, you are
encouraged to examine the model testing scores of the folds directly in the
pandas DataFrame in the Jupyter notebook. You should see that even the



lowest score from an individual fold is still higher than the average testing
score from the decision tree, indicating that it will be better to use a random
forest.

So, what about the other questions that we set out to explore with this
visualization? We are interested in seeing how long it takes to fit random
forest models with various numbers of trees, and what the gains in model
performance are from using more trees. The subplot on the left of Figure
5.18 shows that there is a fairly linear increase in training time as more trees
are added to the forest. This is probably to be expected; we are simply
adding to the amount of computation to be done in the training procedure by
adding more trees.

But is this additional computational time worth it in terms of increased
model performance? The subplot on the right of Figure 5.18 shows that
beyond about 20 trees, it's not clear that adding more trees reliably improves
testing performance. While the model with 50 trees has the highest score, the
fact that adding more trees actually decreases the testing score somewhat
indicates that the gain in ROC AUC for 50 trees may just be due to
randomness, as adding more trees theoretically should increase model
performance. Based on this reasoning, if we were limited to max_depth =
3, we may choose a forest of 20 or perhaps 50 trees and proceed. However,
we will explore the parameter space more fully in the activity at the end of
this chapter.

Finally, note that we have not shown the training ROC AUC metrics here. If
you were to plot these or look them up in the results DataFrame, you'd see
that the training scores are higher than the testing scores, indicating that
some amount of overfitting is happening. While this may be the case, it's still
true that the cross-validation testing scores for this random forest model are
higher than those that we've observed for any other model. Based on this
result, we would likely choose the random forest model at this point.

For a few additional insights into what we can access using our fitted cross-
validation object, let's take a look at the best hyperparameters and
feature importance.

8. Use this code to see the best hyperparameters from cross-validation:



cv_rf_ex.best_params_

This should be the output:

{'n_estimators': 50}

Here, best just means the hyperparameters that resulted in the highest
average model testing score.

9. Run this code to create a DataFrame of the feature names and importances,
and then show a horizontal bar plot sorted by importance:

feat_imp_df = pd.DataFrame({

    'Importance':cv_rf_ex.best_estimator_.feature
_importances_

    },

    index=features_response[:-1])

feat_imp_df.sort_values('Importance',
ascending=True).plot.barh()

The plot should look like this:

Figure 5.19: Feature importance from a random forest



In this code, we've created a dictionary with feature importances and used this
along with the feature names as an index to create a DataFrame. The feature
importances came from the best_estimator_ method of the fitted cross-
validation object, so it refers to the model with the highest average testing score
(in other words, the model with 50 trees). This is a way to access the random
forest model object, which was trained on all the training data, using the best
hyperparameters found by the cross-validation grid search.
feature_importances_ is a method that can be used on fitted random
forest models.

After accessing all these attributes, we plot them on a horizontal bar chart, which
is a convenient way to look at feature importances. Notice that the top five most
important features from the random forest are the same as the top five chosen by
an ANOVA F-test in Chapter 3, Details of Logistic Regression and Feature
Exploration, although they are in a somewhat different order. This is good
confirmation between the different methods.
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Checkerboard Graph

Before moving on to the activity, we illustrate a visualization technique in
Matplotlib. Plotting a two-dimensional grid with colored squares or other
shapes on it can be useful when you want to show three dimensions of data.
Here, color illustrates the third dimension. For example, you may want to
visualize model testing scores over a grid of two hyperparameters, as we'll
do in Activity 5.01, Cross-Validation Grid Search with Random Forest.

The first step in the process is to create grids of x and y coordinates. The
NumPy meshgrid function can be used to do this. This function takes one-
dimensional arrays of x and y coordinates and creates the mesh grid with all
the possible pairs from both. The points in the mesh grid will be the corners
of each square on the checkerboard plot. Here is how the code looks for a 4
x 4 grid of colored patches. Since we are specifying the corners, we require a
5 x 5 grid of points. We also show the arrays of the x and y coordinates:

xx_example, yy_example = np.meshgrid(range(5),
range(5))

print(xx_example)

print(yy_example)

The output is as follows:

[[0 1 2 3 4]

[0 1 2 3 4]

[0 1 2 3 4]

[0 1 2 3 4]

[0 1 2 3 4]]

[[0 0 0 0 0]

[1 1 1 1 1]



[2 2 2 2 2]

[3 3 3 3 3]

[4 4 4 4 4]]

The grid of data to plot on this mesh should have a 4 x 4 shape. We make a
one-dimensional array of integers between 1 and 16, and reshape it to a two-
dimensional, 4 x 4 grid:

z_example = np.arange(1,17).reshape(4,4)

z_example

This outputs the following:

array([[ 1, 2, 3, 4],

       [ 5, 6, 7, 8],

       [ 9, 10, 11, 12],

       [13, 14, 15, 16]])

We can plot the z_example data on the xx_example, yy_example
mesh grid with the following code. Notice that we use pcolormesh to
make the plot with the jet colormap, which gives a rainbow color scale.
We add a colorbar, which needs to be passed the pcolor_ex object
returned by pcolormesh as an argument, so the interpretation of the color
scale is clear:

ax = plt.axes()

pcolor_ex = ax.pcolormesh(xx_example, yy_example,
z_example,

                          cmap=plt.cm.jet)

plt.colorbar(pcolor_ex, label='Color scale')

ax.set_xlabel('X coordinate')



ax.set_ylabel('Y coordinate')

Figure 5.20: A pcolormesh plot of consecutive integers
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Activity 5.01: Cross-Validation Grid Search with Random
Forest

In this activity, you will conduct a grid search over the number of trees in the
forest (n_estimators) and the maximum depth of a tree (max_depth) for a
random forest model on the case study data. You will then create a visualization
showing the average testing score for the grid of hyperparameters that you
searched over. Perform the following steps to complete the activity:

1. Create a dictionary representing the grid for the max_depth and
n_estimators hyperparameters that will be searched. Include depths of
3, 6, 9, and 12, and 10, 50, 100, and 200 trees. Leave the other
hyperparameters at their defaults.

2. Instantiate a GridSearchCV object using the same options that we have
had previously in this chapter, but with the dictionary of hyperparameters
created in step 1 here. Set verbose=2 to see the output for each fit
performed. You can reuse the same random forest model object, rf, that we
have been using or create a new one.

3. Fit the GridSearchCV object on the training data.

4. Put the results of the grid search in a pandas DataFrame.

5. Create a pcolormesh visualization of the mean testing score for each
combination of hyperparameters. You should obtain a visualization similar
to the following:



Figure 5.21: Results of cross-validation of a random forest over a grid
with two hyperparameters

6. Conclude which set of hyperparameters to use.

Note

The Jupyter notebook containing the Python code for this activity can be
found at https://packt.link/D0OBc. Detailed step-wise solution to this
activity can be found via this link.
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Summary

In this chapter, we've learned how to use decision trees and the ensemble
models called random forests that are made up of many decision trees.
Using these simply conceived models, we were able to make better
predictions than we could with logistic regression, judging by the cross-
validation ROC AUC score. This is often the case for many real-world
problems. Decision trees are robust to a lot of the potential issues that can
prevent logistic regression models from good performance, such as non-
linear relationships between features and the response variable, and the
presence of complicated interactions among features.

Although a single decision tree is prone to overfitting, the random forest
ensemble method has been shown to reduce this high-variance issue.
Random forests are built by training many trees. The decreased variance of
the ensemble of trees is achieved by increasing the bias of the individual
trees in the forest, by only training them on a portion of the available
training set (bootstrapped aggregation or bagging), and by only considering
a reduced number of features at each node split.

Now that we have tried several different machine learning approaches to
modeling the case study data, we found that some work better than others;
for example, a random forest with tuned hyperparameters provides the
highest average cross-validation ROC AUC score of 0.776, as we saw in
Activity 5, Cross-Validation Grid Search with Random Forest.

In the next chapter, we'll learn about another type of ensemble method,
called gradient boosting, which is often used in conjunction with decision
trees. Gradient boosting has yielded some of the best performance of all
machine learning models for binary classification use cases. We'll also learn
a powerful method for explaining and interpreting the predictions of
gradient boosted ensembles of trees, using SHapely Additive exPlanation
(SHAP) values.
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6. Gradient Boosting, XGBoost, and SHAP Values

Overview

After reading this chapter, you will be able to describe the concept of
gradient boosting, the fundamental idea underlying the XGBoost package.
You will then train XGBoost models on synthetic data, while learning about
early stopping as well as several XGBoost hyperparameters along the way.
In addition to using a similar method to grow trees as we have previously
(by setting max_depth), you'll also discover a new way of growing trees
that is offered by XGBoost: loss-guided tree growing. After learning about
XGBoost, you'll then be introduced to a new and powerful way of
explaining model predictions, called SHAP (SHapley Additive
exPlanations). You will see how SHAP values can be used to provide
individualized explanations for model predictions from any dataset, not just
the training data, and also understand the additive property of SHAP
values.
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Introduction

As we saw in the previous chapter, decision trees and ensemble models
based on them provide powerful methods for creating machine learning
models. While random forests have been around for decades, recent work
on a different kind of tree ensemble, gradient boosted trees, has resulted in
state-of-the-art models that have come to dominate the landscape of
predictive modeling with tabular data, or data that is organized into a
structured table, similar to the case study data. The two main packages used
by machine learning data scientists today to create the most accurate
predictive models with tabular data are XGBoost and LightGBM. In this
chapter, we'll become familiar with XGBoost using a synthetic dataset, and
then apply it to the case study data in the activity.

Note

Perhaps some of the best motivation for using XGBoost comes from the
paper describing this machine learning system, in the context of Kaggle, a
popular online forum for machine learning competitions:

"Among the 29 challenge-winning solutions published on Kaggle's blog
during 2015, 17 solutions used XGBoost. Among these solutions, eight
solely used XGBoost to train the model, while most others combined
XGBoost with neural nets in ensembles. For comparison, the second most
popular method, deep neural nets, was used in 11 solutions " (Chen and
Guestrin, 2016, https://dl.acm.org/doi/abs/10.1145/2939672.2939785).

As we'll see, XGBoost ties together a few of the different ideas we've
discussed so far, including decision trees and ensemble modeling as well as
gradient descent.

In addition to more performant models, recent machine learning research
has yielded more detailed ways to explain the predictions of models. Rather
than relying on interpretations that only represent the model training set in

https://dl.acm.org/doi/abs/10.1145/2939672.2939785


aggregate, such as logistic regression coefficients or the feature importances
of a random forest, a new package called SHAP allows us to interpret
model predictions individually, and for any dataset we want, such as
validation or test data. This can be very helpful in enabling us, as data
scientists, as well as our business partners, to understand the workings of a
model at a granular level, even for new data.
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Gradient Boosting and XGBoost

What Is Boosting?

Boosting is a procedure for creating ensembles of many machine learning
models, or estimators, similar to the bagging concept that underlies the
random forest model. Like bagging, while boosting can be used with any
kind of machine learning model, it is commonly used to build ensembles of
decision trees. A key difference from bagging is that in boosting, each new
estimator added to the ensemble depends on all the estimators added before
it. Because the boosting procedure proceeds in sequential stages, and the
predictions of ensemble members are added up to calculate the overall
ensemble prediction, it is also called stagewise additive modeling. The
difference between bagging and boosting can be visualized as in Figure 6.1:

Figure 6.1: Bagging versus boosting



While bagging trains many estimators using different random samples of the
training data, boosting trains new estimators using information about which
samples were incorrectly classified by the previous estimators in the
ensemble. By focusing new estimators on these samples, the goal is that the
overall ensemble will have better performance across the whole training
dataset. AdaBoost, a precursor to XGBoost, accomplished this goal by
giving more weight to incorrectly classified samples as new estimators in the
ensemble are trained.
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Gradient Boosting and XGBoost

XGBoost is a modeling procedure and Python package that is one of the
most popular machine learning methods in use today, due to its superior
performance in many domains, from business to the natural sciences.
XGBoost has also proven to be one of the most successful tools in machine
learning competitions. We will not discuss all the details of how XGBoost
is implemented, but rather get a high-level idea of how it works and look at
some of the most important hyperparameters. For further details, the
interested reader should refer to the publication XGBoost: A Scalable Tree
Boosting System, by Tianqi Chen and Carlos Guestrin
(https://dl.acm.org/doi/abs/10.1145/2939672.2939785).

The XGBoost implementation of the gradient boosting procedure is a
stagewise additive model similar to AdaBoost. However, instead of directly
giving more weight to misclassified samples during model training,
XGBoost uses a procedure similar in nature to gradient descent. Recall
from Chapter 4, The Bias Variance Trade-off, that optimization with
gradient descent uses information about the derivative of a loss function
(another name for the cost function) to update the estimated coefficients
when training a logistic regression model. The derivative of the loss
function contains information about which direction and how much to
adjust the coefficient estimates at each iteration of the procedure, so as to
reduce the level of error in the predictions.

XGBoost applies the gradient descent idea to stagewise additive modeling,
using information about the gradient (another word for derivative) of a loss
function to train new decision trees to add to the ensemble. In fact,
XGBoost takes things a step further than gradient descent as described in
Chapter 4, The Bias-Variance Trade-Off, and uses information about both
the first and second derivatives. The approach of training decision trees
using error gradients is an alternative to the node impurity idea introduced
in Chapter 5, Decision Trees and Random Forests. Conceptually, XGBoost
trains new trees with the goal of moving the ensemble prediction in the
direction of decreasing error. How big a step to take in that direction is
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controlled by the learning_rate hyperparameter, analogous to
learning_rate in Exercise 4.01 Using Gradient Descent to Minimize a
Cost Function, from Chapter 4, The Bias Variance Trade-off.

At this point, we should have enough knowledge about how XGBoost
works to start getting our hands dirty and using it. To illustrate XGBoost,
we'll create a synthetic dataset for binary classification, with scikit-learn's
make_classification function. This dataset will have 5,000 samples
and 40 features. The rest of the options here control how challenging a
classification task this will be, and you should consult the scikit-learn
documentation to better understand them. Of particular interest is the fact
that we'll have multiple clusters (n_clusters_per_class), meaning
there will be several regions of points in multidimensional feature space
that belong to a certain class, similar to the cluster shown in the last chapter
in Figure 5.3. A tree-based model should be able to identify these clusters.
Also, we are specifying that there are only 3 informative features out of a
total of 40 (n_informative), as well as 2 redundant features
(n_redundant) that will contain the same information as the informative
ones. So, all told, only 5 out of the 40 features should be useful in making
predictions, and of those, all the information is encoded in 3 of them.

If you want to follow along with the examples in this chapter on your
computer, please refer to the Jupyter notebook at https://packt.link/L5oS7:

from sklearn.datasets import make_classification

X, y = make_classification(n_samples=5000,
n_features=40,\

                           n_informative=3,
n_redundant=2,\

                           n_repeated=0,
n_classes=2,\

                           n_clusters_per_class=3
,\
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                           weights=None,
flip_y=0.05,\

                           class_sep=0.1,
hypercube=True,\

                           shift=0.0,scale=1.0,
shuffle=True,\

                           random_state=2)

Note that the class fraction of the response variable y is about 50%:

y.mean()

This should output the following:

0.4986

Instead of using cross-validation, in this chapter, we will split this synthetic
dataset just once into a training and validation set. However, the concepts
we introduce here could be extended to the cross-validation scenario. We'll
split this synthetic data into 80% for training and 20% for validation. In a
real-world data problem, we would also want to have a test set reserved for
later use in evaluating the final model, but we'll forego this here:

from sklearn.model_selection import
train_test_split

X_train, X_val, y_train, y_val = \

train_test_split(X, y, test_size=0.2,
random_state=24)

Now that we've prepared the data for modeling, we need to instantiate an
object of the XGBClassifier class. Note that we will now be using the
XGBoost package, and not scikit-learn, to develop a predictive model.
However, XGBoost has an API (application programming interface) that
was designed to be similar to that of scikit-learn, so using this class should



be intuitive. The XGBClassifier class can be used to create a model
object with fit and predict methods and other familiar functionality,
and we can specify model hyperparameters when instantiating the class.
We'll specify just a few hyperparameters here, which we've already
discussed: n_estimators is the number of boosting rounds to use for the
model (in other words, the number of stages for the stagewise additive
modeling procedure), objective is the loss function that will be used to
calculate gradients, and learning_rate controls how much each new
estimator adds to the ensemble, or, in essence, how far of a step to take to
decrease prediction error. The remaining hyperparameters are related to
how much output we want to see during model training (verbosity) and
the soon-to-be-deprecated label_encoder option, which XGBoost
developers recommend setting to False:

xgb_model_1 =
xgb.XGBClassifier(n_estimators=1000,\

                                verbosity=1,\

                                use_label_encoder
=False,\

                                objective='binary
:logistic',\

                                learning_rate=0.3
)

The hyperparameter values we've indicated specify that:

We will have 1,000 estimators, or boosting rounds. We'll discuss in
more detail shortly how many rounds are needed; the default value is
100.

We are familiar with the objective function (also known as the cost
function) for binary logistic regression from Chapter 4, The Bias-
Variance Trade-Off. XGBoost also offers a wide variety of objective
functions for a range of tasks, including classification and regression.



The learning rate is set to 0.3, which is the default. Different values
can be explored via hyperparameter search procedures, which we'll
demonstrate.

Note

It is recommended to install XGBoost and SHAP using an Anaconda
environment as demonstrated in the Preface. If you install different
versions than those indicated, your results may be different than shown
here.

Now that we have a model object and some training data, we are ready to fit
the model. This looks similar to how it did in scikit-learn:

%%time

xgb_model_1.fit(X_train, y_train,\

                eval_metric="auc",\

                verbose=True)

Here, we are tracking how long the fitting procedure takes using the
%%time "cell magic" in the Jupyter notebook. We need to supply the
features X_train features and the response variable y_train of the
training data. We also supply eval_metric and set the verbosity, which
we'll explain shortly. Executing this cell should give output similar to this:

CPU times: user 52.5 s, sys: 986 ms, total: 53.4
s

Wall time: 17.5 s

Out[7]:

XGBClassifier(base_score=0.5, booster='gbtree',\

              colsample_bylevel=1,
colsample_bynode=1,\



              colsample_bytree=1, gamma=0,
gpu_id=-1,\

              importance_type='gain',interaction_
constraints='',\

              learning_rate=0.3,
max_delta_step=0, max_depth=6,\

              min_child_weight=1, missing=nan,\

              monotone_constraints='()',
n_estimators=1000,\

              n_jobs=4, num_parallel_tree=1,
random_state=0,\

              reg_alpha=0, reg_lambda=1,
scale_pos_weight=1,\

              subsample=1, tree_method='exact',\

              use_label_encoder=False,
validate_parameters=1,\

              verbosity=1)

The output tells us that this cell took 17.5 seconds to execute, called the
"wall time," or the elapsed time on a clock that might be on your wall. The
CPU times are longer than this because XGBoost efficiently uses multiple
processors simultaneously. XGBoost also prints out all the
hyperparameters, including the ones we set and the others that were left at
their defaults.

Now, to examine the performance of this fitted model, we'll evaluate the
area under the ROC curve on the validation set. First, we need to obtain the
predicted probabilities:

val_set_pred_proba =
xgb_model_1.predict_proba(X_val)[:,1]



from sklearn.metrics import roc_auc_score

roc_auc_score(y_val, val_set_pred_proba)

The output of this cell should be as follows:

0.7773798710782294

This indicates an ROC AUC of about 0.78. This will be our model
performance baseline, using nearly default options for XGBoost.
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XGBoost Hyperparameters

Early Stopping

When training ensembles of decision trees with XGBoost, there are many
options available for reducing overfitting and leveraging the bias-variance
trade-off. Early stopping is a simple one of these and can help provide an
automated answer to the question "How many boosting rounds are
needed?". It's important to note that early stopping relies on having a
separate validation set of data, aside from the training set. However, this
validation set will actually be used during the model training process, so it
does not qualify as "unseen" data that was held out from model training,
similar to how we used validation sets in cross-validation to select model
hyperparameters in Chapter 4, The Bias-Variance Trade-Off.

When XGBoost is training successive decision trees to reduce error on the
training set, it's possible that adding more and more trees to the ensemble
will provide increasingly better fits to the training data, but start to cause
lower performance on held-out data. To avoid this, we can use a validation
set, also called an evaluation set or eval_set by XGBoost. The
evaluation set will be supplied as a list of tuples of features and their
corresponding response variables. Whichever tuple comes last in this list
will be the one that is used for early stopping. We want this to be the
validation set since the training data will be used to fit the model and can't
provide an estimate of out-of-sample generalization:

eval_set = [(X_train, y_train), (X_val, y_val)]

Now we can fit the model again, but this time we supply the eval_set
keyword argument with the evaluation set we just created. At this point, the
eval_metric of auc becomes important. This means that after each
boosting round, before training another decision tree, the area under the
ROC curve will be evaluated on all the datasets supplied with eval_set.
Since we'll indicate verbosity=True, we'll get output printed below the



cell with the ROC AUC for both the training set and the validation set. This
provides a nice live look at how model performance changes on the training
and validation data as more boosting rounds are trained.

Since, in predictive modeling, we're primarily interested in how a model
performs on new and unseen data, we would like to stop training additional
boosting rounds when it becomes clear that they are not improving model
performance on out-of-sample data. The
early_stopping_rounds=30 argument indicates that once 30
boosting rounds have been completed without any additional improvement
in the ROC AUC on the validation set, XGBoost should stop model
training. Once model training is complete, the final fitted model will only
have as many ensemble members as needed to get the highest model
performance on the validation set. This means that the last 30 members of
the ensemble will be discarded, since they didn't provide any increase in
validation set performance. Let's now fit this model and watch the progress:

%%time

xgb_model_1.fit(X_train, y_train,
eval_set=eval_set,\

                eval_metric='auc',\

                verbose=True,
early_stopping_rounds=30)

The output should look something like this:

[0] validation_0-auc:0.80412 validation_1-
auc:0.75223

[1] validation_0-auc:0.84422 validation_1-
auc:0.79207

[2] validation_0-auc:0.85920 validation_1-
auc:0.79278



[3] validation_0-auc:0.86616 validation_1-
auc:0.79517

[4] validation_0-auc:0.88261 validation_1-
auc:0.79659

[5] validation_0-auc:0.88605 validation_1-
auc:0.80061

[6] validation_0-auc:0.89226 validation_1-
auc:0.80224

[7] validation_0-auc:0.89826 validation_1-
auc:0.80305

[8] validation_0-auc:0.90559 validation_1-
auc:0.80095

[9] validation_0-auc:0.91954 validation_1-
auc:0.79685

[10] validation_0-auc:0.92113 validation_1-
auc:0.79608

…

[33] validation_0-auc:0.99169 validation_1-
auc:0.78323

[34] validation_0-auc:0.99278 validation_1-
auc:0.78261

[35] validation_0-auc:0.99329 validation_1-
auc:0.78139

[36] validation_0-auc:0.99344 validation_1-
auc:0.77994

CPU times: user 2.65 s, sys: 136 ms, total: 2.78
s

Wall time: 2.36 s



…

Notice that this took much less time than the previous fit. This is because,
due to early stopping, we only trained 37 rounds of boosting (notice
boosting rounds are zero indexed). This means that the boosting procedure
only needed 8 rounds to achieve the best validation score, as opposed to the
1,000 we tried previously! You can access the number of boosting rounds
needed to reach the optimal validation set score, as well as that score, with
the booster attribute of the model object. This attribute presents a lower-
level interface to the model than the scikit-learn API we have been using:

xgb_model_1.get_booster().attributes()

The output should look like this, confirming the number of iterations and
best validation score:

{'best_iteration': '7', 'best_score': '0.80305'}

From the training procedure, we can also see the ROC AUC after each
round for both the training data, validation_0-auc, and the validation
data, validation_1-auc, which provide insights into overfitting as the
boosting procedure progresses. Here we can see that the validation score
increased up to round 8, after which it started to decrease, indicating that
further boosting would likely produce an undesirably overfitted model.
However, the training score continued to increase up to the point the
procedure was terminated, showing how powerfully XGBoost is able to fit
the training data.

We can further confirm that the fitted model object only represents seven
rounds of boosting, and check validation set performance, by manually
calculating the ROC AUC as we did previously:

val_set_pred_proba_2 =
xgb_model_1.predict_proba(X_val)[:,1]

roc_auc_score(y_val, val_set_pred_proba_2)



This should output the following:

0.8030501882609966

This matches the highest validation score achieved after seven rounds of
boosting. So, with one simple tweak to the model training procedure, by
using a validation set and early stopping, we were able to improve model
performance on the validation set from about 0.78 to 0.80, a substantial
increase. This shows the importance of early stopping in boosting.

One natural question to ask here is "How did we know that 30 rounds for
early stopping would be enough?". You can experiment with this number, as
with any hyperparameter, and different values may be appropriate for
different datasets. You can look to see how the validation score changes
with each boosting round to get an idea for this. Sometimes, the validation
score can increase and decrease in a jumpy way from round to round, so it's
a good idea to have enough rounds to make sure you've found the
maximum, and boosted through any temporary decreases.
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Tuning the Learning Rate

The learning rate is also referred to as eta in the XGBoost documentation, as
well as step size shrinkage. This hyperparameter controls how much of a
contribution each new estimator will make to the ensemble prediction. If you
increase the learning rate, you may reach the optimal model, defined as
having the highest performance on the validation set, faster. However, there
is the danger that setting it too high will result in boosting steps that are too
large. In this case, the gradient boosting procedure may not converge on the
optimal model, due to similar issues to those discussed in Exercise 4.01,
Using Gradient Descent to Minimize a Cost Function, from Chapter 4, The
Bias Variance Trade-off, regarding large learning rates in gradient descent.
Let's explore how the learning rate affects model performance on our
synthetic data.

The learning rate is a number between zero and 1 (inclusive of endpoints,
although a learning rate of zero is not useful). We make an array of 25
evenly spaced numbers between 0.01 and 1 for the learning rates we'll test:

learning_rates = np.linspace(start=0.01, stop=1,
num=25)

Now we set up a for loop to train a model for each learning rate and save
the validation scores in an array. We'll also track the number of boosting
rounds that it takes to reach the best iteration. The next several code blocks
should be run together as one cell in a Jupyter notebook. We start by
measuring how long this will take, creating empty lists to store results, and
opening the for loop:

%%time

val_aucs = []

best_iters = []

for learning_rate in learning_rates:



At each loop iteration, the learning_rate variable will hold successive
elements of the learning_rates array. Once inside the loop, the first
step is to update the hyperparameters of the model object with the new
learning rate. This is accomplished using the set_params method, which
we supply with a double asterisk ** and a dictionary mapping
hyperparameter names to values. The ** function call syntax in Python
allows us to supply an arbitrary number of keyword arguments, also called
kwargs, as a dictionary. In this case, we are only changing one keyword
argument, so the dictionary only has one item:

    xgb_model_1.set_params(**
{'learning_rate':learning_rate})

Now that we've set the new learning rate on the model object, we train the
model using early stopping as before:

    xgb_model_1.fit(X_train, y_train,
eval_set=eval_set,\

                    eval_metric='auc',\

                    verbose=False,
early_stopping_rounds=30)

After fitting, we obtain the predicted probabilities for the validation set and
then use them to calculate the validation ROC AUC. This is added to our list
of results using the append method:

    val_set_pred_proba_2 =
xgb_model_1.predict_proba(X_val)[:,1]

    val_aucs.append(roc_auc_score(y_val,
val_set_pred_proba_2))

Finally, we also capture the number of rounds required for each learning
rate:

     best_iters.append(



        int(xgb_model_1.get_booster().\

                        attributes()
['best_iteration']))

The previous five code snippets should all be run together in one cell. The
output should be similar to this:

CPU times: user 1min 23s, sys: 526 ms, total:
1min 24s

Wall time: 22.2 s

Now that we have our results from this hyperparameter search, we can
visualize validation set performance and the number of iterations. Since
these two metrics are on different scales, we'll want to create a dual y axis
plot. pandas makes this easy, so first we'll put all the data into a data frame:

learning_rate_df = \

pd.DataFrame({'Learning rate':learning_rates,\

              'Validation AUC':val_aucs,\

              'Best iteration':best_iters})

Now we can visualize performance and the number of iterations for different
learning rates like this, noting that:

We set the index (set_index) so that the learning rate is plotted on
the x axis, and the other columns on the y axis.

The secondary_y keyword argument indicates which column to plot
on the right-hand y axis.

The style argument allows us to specify different line styles for each
column plotted. -o is a solid line with dots, while --o is a dashed line
with dots:

mpl.rcParams['figure.dpi'] = 400



learning_rate_df.set_index('Learning rate')\

.plot(secondary_y='Best iteration', style=['-
o', '--o'])

The resulting plot should look like this:

Figure 6.2: XGBoost model performance on a validation set, with the
number of boosting rounds until best iteration, for different learning

rates

Overall, it appears that smaller learning rates result in better model
performance for this synthetic data. By using a learning rate smaller than the
default of 0.3, the best performance we can obtain can be seen as follows:

max(val_aucs)

The output is as follows:

0.8115309360232714



By adjusting the learning rate, we were able to increase the validation AUC
from about 0.80 to 0.81, indicating the benefits of using an appropriate
learning rate.

In general, smaller learning rates will usually result in better model
performance, although they will require a larger number of boosting rounds,
since the contribution of each round is smaller. This will translate into more
time required for model training. We can see this in the plot of the number of
rounds needed to reach the best iteration in Figure 6.2. In this case, it looks
like good performance can be attained with fewer than 50 rounds, and the
model training time is not that long for this data in any case. For larger
datasets, training time may be longer. Depending on how much
computational time you have, decreasing the learning rate and training more
rounds can be an effective way to increase model performance.

When exploring smaller learning rates, be sure to set the n_estimators
hyperparameter large enough to allow the training process to find the
optimal model, ideally in conjunction with early stopping.

OceanofPDF.com

https://oceanofpdf.com/


Other Important Hyperparameters in XGBoost

We've seen that overfitting in XGBoost can be compensated for by using
different learning rates, as well as early stopping. What are some of the
other hyperparameters that may be relevant? XGBoost has many
hyperparameters and we won't list them all here. You're encouraged to
consult the documentation
(https://xgboost.readthedocs.io/en/latest/parameter.html) for a full list.

In the following exercise, we'll do a grid search over ranges of six
hyperparameters, including the learning rate. We will also include
max_depth, which should be familiar from Chapter 5, Decision Trees and
Random Forests, and controls the depth to which trees in the ensemble are
grown. Aside from these, we will also consider the following:

gamma limits the complexity of trees in the ensemble by only allowing
a node to be split if the reduction in the loss function value is greater
than a certain amount.

min_child_weight also controls the complexity of trees by only
splitting nodes if they have at least a certain amount of "sample
weight." If all samples have equal weight (as they do for our exercise),
this equates to the minimum number of training samples in a node.
This is similar to min_weight_fraction_leaf and
min_samples_leaf for decision trees in scikit-learn.

colsample_bytree is a randomly selected fraction of features that
will be used to grow each tree in the ensemble. This is similar to the
max_features parameter in scikit-learn (which does the selection
at a node level as opposed to the tree level here). XGBoost also makes
colsample_bylevel and colsample_bynode available to do
the feature sampling at each level of each tree, and each node,
respectively.

https://xgboost.readthedocs.io/en/latest/parameter.html


subsample controls what fraction of samples from the training data
is randomly selected prior to growing a new tree for the ensemble.
This is similar to the bootstrap option for random forests in scikit-
learn. Both this and the colsample parameters limit the information
available during model training, increasing the bias of the individual
ensemble members, but hopefully also reducing the variance of the
overall ensemble and improving out-of-sample model performance.

As you can see, gradient boosted trees in XGBoost implement several
concepts that are familiar from decision trees and random forests. Now, let's
explore how these hyperparameters affect model performance.
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Exercise 6.01: Randomized Grid Search for Tuning XGBoost
Hyperparameters

In this exercise, we'll use a randomized grid search to explore the space of six
hyperparameters. A randomized grid search is a good option when you have many
values of many hyperparameters you'd like to search over. We'll look at six
hyperparameters here. If, for example, there were five values for each of these
that we'd like to test, we'd need 5  = 15,625 searches. Even if each model fit only
took a second, we'd still need several hours to exhaustively search all possible
combinations. A randomized grid search can achieve satisfactory results by only
searching a random sample of all these combinations. Here, we'll show how to do
this using scikit-learn and XGBoost.

The first step in a randomized grid search is to specify the range of values you'd
like to sample from, for each hyperparameter. This can be done by either
supplying a list of values, or a distribution object to sample from. In the case of
discrete hyperparameters such as max_depth, where there are only a few
possible values, it makes sense to specify them as a list. On the other hand, for
continuous hyperparameters, such as subsample, that can vary anywhere on
the interval (0, 1], we don't need to specify a list of values. Rather, we can ask
that the grid search randomly sample values in a uniform way over this interval.
We will use a uniform distribution to sample several of the hyperparameters we
consider:

Note

The Jupyter notebook for this exercise can be found at https://packt.link/TOXso.

1. Import the uniform distribution class from scipy and specify ranges for
all hyperparameters to be searched, using a dictionary. uniform can take
two arguments, loc and scale, specifying the lower bound of the interval
to sample from and the width of the interval, respectively:

from scipy.stats import uniform

param_grid = {'max_depth':[2,3,4,5,6,7],

6
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              'gamma':uniform(loc=0.0, scale=3),

              'min_child_weight':list(range(1,151
)),

              'colsample_bytree':uniform(loc=0.1,
scale=0.9),

              'subsample':uniform(loc=0.5,
scale=0.5),

              'learning_rate':uniform(loc=0.01,
scale=0.5)}

Here, we've selected parameter ranges based on experimentation and
experience. For example with subsample, the XGBoost documentation
recommends choosing values of at least 0.5, so we've indicated
uniform(loc=0.5, scale=0.5), which means sampling from the
interval [0.5, 1].

2. Now that we've indicated which distributions to sample from, we need to do
the sampling. scikit-learn offers the ParameterSampler class, which
will randomly sample the param_grid parameters supplied and return as
many samples as requested (n_iter). We also set RandomState for
repeatable results across different runs of the notebook:

from sklearn.model_selection import
ParameterSampler

rng = np.random.RandomState(0)

n_iter=1000

param_list = list(ParameterSampler(param_grid,
n_iter=n_iter,

                                   random_state=r
ng))

We have returned the results in a list of dictionaries of specific parameter
values, corresponding to locations in the 6-dimensional hyperparameter
space.



Note that in this exercise, we are iterating through 1,000 hyperparameter
combinations, which will likely take over 5 minutes. You may wish to
decrease this number for faster results.

3. Examine the first item of param_list:

param_list[0]

This should return a combination of six parameter values, from the
distributions indicated:

{'colsample_bytree': 0.5939321535345923,

'gamma': 2.1455680991172583,

'learning_rate': 0.31138168803582195,

'max_depth': 5,

'min_child_weight': 104,

'subsample': 0.7118273996694524}

4. Observe how you can set multiple XGBoost hyperparameters simultaneously
with a dictionary, using the ** syntax. First create a new XGBoost classifier
object for this exercise.

xgb_model_2 = xgb.XGBClassifier(

    n_estimators=1000,

    verbosity=1,

    use_label_encoder=False,

    objective='binary:logistic')

xgb_model_2.set_params(**param_list[0])

The output should show the indicated hyperparameters being set:

XGBClassifier(base_score=0.5, booster='gbtree',\

              colsample_bylevel=1,
colsample_bynode=1,\



              colsample_bytree=0.5939321535345923
,\

              gamma=2.1455680991172583,
gpu_id=-1,\

              importance_type='gain',interaction_
constraints='',\

              learning_rate=0.31138168803582195,\

              max_delta_step=0, max_depth=5,\

              min_child_weight=104, missing=nan,\

              monotone_constraints='()',
n_estimators=1000,\

              n_jobs=4, num_parallel_tree=1,\

              random_state=0, reg_alpha=0,
reg_lambda=1,\

              scale_pos_weight=1,
subsample=0.7118273996694524,\

              tree_method='exact',
use_label_encoder=False,\

              validate_parameters=1, verbosity=1)

We will use this procedure in a loop to look at all hyperparameter values.

5. The next several steps will be contained in one cell inside a for loop. First,
measure the time it will take to do this, create an empty list to save
validation AUCs, and then start a counter:

%%time

val_aucs = []

counter = 1

6. Open the for loop, set the hyperparameters, and fit the XGBoost model,
similar to the preceding example of tuning the learning rate:



for params in param_list:

    #Set hyperparameters and fit model

    xgb_model_2.set_params(**params)

    xgb_model_2.fit(X_train, y_train,
eval_set=eval_set,\

                    eval_metric='auc',\

                    verbose=False,
early_stopping_rounds=30)

7. Within the for loop, get the predicted probability and validation set AUC:

    #Get predicted probabilities and save
validation ROC AUC

    val_set_pred_proba =
xgb_model_2.predict_proba(X_val)[:,1]

    val_aucs.append(roc_auc_score(y_val,
val_set_pred_proba))

8. Since this procedure will take a few minutes, it's nice to print the progress to
the Jupyter notebook output. We use the Python remainder syntax, %, to print
a message every 50 iterations, in other words, when the remainder of
counter divided by 50 equals zero. Finally, we increment the counter:

    #Print progress

    if counter % 50 == 0:

        print('Done with {counter} of
{n_iter}'.format(

            counter=counter, n_iter=n_iter))

    counter += 1

9. Assembling steps 5-8 in one cell and running the for loop should give output
like this:

Done with 50 of 1000



Done with 100 of 1000

…

Done with 950 of 1000

Done with 1000 of 1000

CPU times: user 24min 20s, sys: 18.9 s, total:
24min 39s

Wall time: 6min 27s

10. Now that we have all the results from our hyperparameter exploration, we
need to examine them. We can easily put all the hyperparameter
combinations in a data frame, since they are organized as a list of
dictionaries. Do this and look at the first few rows:

xgb_param_search_df = pd.DataFrame(param_list)

xgb_param_search_df.head()

The output should look like this:

Figure 6.3: Hyperparameter combinations from a randomized grid
search

11. We can also add the validation set ROC AUCs to the data frame and see
what the maximum is:

xgb_param_search_df['Validation ROC AUC'] =
val_aucs

max_auc = xgb_param_search_df['Validation ROC
AUC'].max()



max_auc

The output should be as follows:

0.8151220995602575

The result of searching over the hyperparameter space is that the validation
set AUC is about 0.815. This is larger than the 0.812 we obtained with early
stopping and searching over learning rates (Figure 6.3), although not much.
This means that, for this data, the default hyperparameters (aside from the
learning rate) were sufficient to achieve pretty good performance. While we
didn't improve performance much with the hyperparameter search, it is
instructive to see how the changing values of the hyperparameters affect
model performance. We'll examine the marginal distributions of AUCs with
respect to each parameter individually in the following steps. This means
that we'll look at how the AUCs change as one hyperparameter at a time
changes, keeping in mind the fact that the other hyperparameters are also
changing in our grid search results.

12. Set up a grid of six subplots for plotting performance against each
hyperparameter using the following code, which also adjusts the figure
resolution and starts a counter we'll use to loop through the subplots:

mpl.rcParams['figure.dpi'] = 400

fig, axs = plt.subplots(3,2,figsize=(8,6))

counter = 0

13. Open a for loop to iterate through the hyperparameter names, which are the
columns of the data frame, not including the last column. Access the axes
objects by flattening the 3 x 2 array returned by subplot and indexing it
with counter. For each hyperparameter, use the plot.scatter method
of the data frame to make a scatter plot on the appropriate axis. The x axis
will show the hyperparameter, the y axis the validation AUC, and the other
options help us get black circular markers with white face colors (interiors):

for col in xgb_param_search_df.columns[:-1]:

    this_ax = axs.flatten()[counter]

    xgb_param_search_df.plot.scatter(x=col,\



                                     y='Validatio
n ROC AUC',\

                                     ax=this_ax,
marker='o',\

                                     color='w',\

                                     edgecolor='k
',\

                                     linewidth=0.
5)

14. The data frame's plot method will automatically create x and y axis labels.
However, since the y axis label will be the same for all of these plots, we
only need to include it in the first one. So we set all the others to an empty
string, '', and increment the counter:

    if counter > 0:

        this_ax.set_ylabel('')

    counter += 1

Since we will be plotting marginal distributions, as we look at how
validation AUC changes with a given hyperparameter, all the other
hyperparameters are also changing. This means that the relationship may be
noisy. To get an idea of the overall trend, we are also going to create line
plots with the average value of the validation AUC in each decile of the
hyperparameter. Deciles organize data into bins based on whether the values
fall into the bottom 10%, the next 10%, and so on, up to the top 10%. pandas
offers a function called qcut, which cuts a Series into quantiles (a quantile
is one of a group of equal-size bins, for example one of the deciles in the
case of 10 bins), returning another series of the quantiles, as well as the
endpoints of the quantile bins, which you can think of as histogram edges.

15. Use pandas qcut to generate a series of deciles (10 quantiles) for each
hyperparameter (except max_depth), returning the bin edges (there will be
11 of these for 10 quantiles) and dropping bin edges as needed if there are
not enough unique values to divide into 10 quantiles



(duplicates='drop'). Create a list of points halfway between each pair
of bin edges for plotting:

    if col != 'max_depth':

        out, bins =
pd.qcut(xgb_param_search_df[col], q=10,\

                            retbins=True,
duplicates='drop')

        half_points = [(bins[ix] + bins[ix+1])/2

                       for ix in
range(len(bins)-1)]

16. For max_depth, since there are only six unique values, we can use these
values directly in a similar way to the deciles:

    else:

        out = xgb_param_search_df[col]

        half_points =
np.sort(xgb_param_search_df[col].unique())

17. Create a temporary data frame by copying the hyperparameter search data
frame, create a new column with the Series of deciles, and use this to find
the average value of the validation AUC within each hyperparameter decile:

    tmp_df = xgb_param_search_df.copy()

    tmp_df['param_decile'] = out

    mean_df = tmp_df.groupby('param_decile').agg(

        {'Validation ROC AUC':'mean'})

18. We can visualize results with a dashed line plot of the decile averages of
validation AUC within each grouping, on the same axis as each scatter plot.
Close the for loop and clean up the subplot formatting with
plt.tight_layout():

    this_ax.plot(half_points,\



                 mean_df.values,\

                 color='k',\

                 linestyle='--')

plt.tight_layout()

After running the for loop, the resulting image should look like this:

Figure 6.4: Validation AUCs plotted against each hyperparameter, along
with the average values within hyperparameter deciles

While we noted that the hyperparameter search in this exercise did not result
in a substantial increase in validation AUC over previous efforts in this
chapter, the plots in Figure 6.4 can still show us how XGBoost
hyperparameters affect model performance for this particular dataset. One
way that XGBoost combats overfitting is by limiting the data available when
growing trees, either by randomly selecting only a fraction of the features



available to each tree (colsample_bytree), or a fraction of the training
samples (subsample). However, for this synthetic data, it appears the
model performs best when using 100% of the features and samples for each
tree; less than this and model performance steadily degrades. Another way to
control overfitting is to limit the complexity of trees in the ensemble, by
controlling their max_depth, the minimum number of training samples in
the leaves (min_child_weight), or the minimum reduction in the value
of the loss function reduction required to split a node (gamma). Neither
max_depth nor gamma appear to have much effect on model performance
in our example here, while limiting the number of samples in the leaves
appears to be detrimental.

It appears that in this case, the gradient boosting procedure is robust enough
on its own to achieve good model performance, without any additional tricks
required to reduce overfitting. Similar to what we observed above, however,
having a smaller learning_rate is beneficial.

19. We can show the optimal hyperparameter combination and the
corresponding validation set AUC as follows:

max_ix = xgb_param_search_df['Validation ROC
AUC'] == max_auc

xgb_param_search_df[max_ix]

This should return a row of the data frame similar to this:

Figure 6.5: Optimal hyperparameter combination and validation set AUC

The validation set AUC is similar to what we achieved above (step 10) by tuning
only the learning rate.
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Another Way of Growing Trees: XGBoost's grow_policy

In addition to limiting the maximum depth of trees using a max_depth
hyperparameter, there is another paradigm for controlling tree growth:
finding the node where a split would result in the greatest reduction in the
loss function, and splitting this node, regardless of how deep it will make the
tree. This may result in a tree with one or two very deep branches, while the
other branches may not have grown very far. XGBoost offers a
hyperparameter called grow_policy, and setting this to lossguide
results in this kind of tree growth, while the depthwise option is the
default and grows trees to an indicated max_depth, as we've done in
Chapter 5, Decision Trees and Random Forests, and so far in this chapter.
The lossguide grow policy is a newer option in XGBoost and mimics the
behavior of LightGBM, another popular gradient boosting package.

To use the lossguide policy, it is necessary to set another hyperparameter
we haven't discussed yet, tree_method, which must be set to hist or
gpu-hist. Without going into too much detail, the hist method will use
a faster way of searching for splits. Instead of looking between every
sequential pair of sorted feature values for the training samples in a node, the
hist method builds a histogram, and only considers splits on the edges of
the histogram. So, for example, if there are 100 samples in a node, their
feature values may be binned into 10 groups, meaning there are only 9
possible splits to consider instead of 99.

We can instantiate an XGBoost model for the lossguide grow policy as
follows, using a learning rate of 0.1 based on intuition from our
hyperparameter exploration in the previous exercise:

xgb_model_3 = xgb.XGBClassifier(

    n_estimators=1000,

    max_depth=0,

    learning_rate=0.1,



    verbosity=1,

    objective='binary:logistic',

    use_label_encoder=False,

    n_jobs=-1,

    tree_method='hist',

    grow_policy='lossguide')

Notice here that we've set max_depth=0, since this hyperparameter is not
relevant for the lossguide policy. Instead, we are going to set a
hyperparameter called max_leaves, which simply controls the maximum
number of leaves in the trees that will be grown. We'll do a hyperparameter
search of values ranging from 5 to 100 leaves:

max_leaves_values = list(range(5,105,5))

print(max_leaves_values[:5])

print(max_leaves_values[-5:])

This should output the following:

[5, 10, 15, 20, 25]

[80, 85, 90, 95, 100]

Now we are ready to repeatedly fit and validate the model across this range
of hyperparameter values, similar to what we've done previously:

%%time

val_aucs = []

for max_leaves in max_leaves_values:

    #Set parameter and fit model

    xgb_model_3.set_params(**
{'max_leaves':max_leaves})



    xgb_model_3.fit(X_train, y_train,
eval_set=eval_set,\

                    eval_metric='auc',
verbose=False,\

                    early_stopping_rounds=30)

    #Get validation score

    val_set_pred_proba =
xgb_model_3.predict_proba(X_val)[:,1]

    val_aucs.append(roc_auc_score(y_val,
val_set_pred_proba))

The output will include the wall time for all of these fits, which was about 24
seconds in testing. Now let's put the results in a data frame:

max_leaves_df = \

pd.DataFrame({'Max leaves':max_leaves_values,

              'Validation AUC':val_aucs})

We can visualize how the validation AUC changes with the maximum
number of leaves, similar to our visualization of the learning rate:

mpl.rcParams['figure.dpi'] = 400

max_leaves_df.set_index('Max leaves').plot()

This will result in a plot like this:



Figure 6.6: Validation AUC against the max_leaves hyperparameter

Smaller values of max_leaves will limit the complexity of the trees
grown for the ensemble, which will ideally increase bias, but also decrease
variance for improved out-of-sample performance. We can see this in a
higher validation set AUC when the trees are limited to 15 or 20 leaves.
What is the maximum validation set AUC?

max_auc = max_leaves_df['Validation AUC'].max()

max_auc

This should output the following:

0.8151200989120475

Let's confirm that this maximum validation AUC occurs at
max_leaves=20, as indicated in Figure 6.6:

max_ix = max_leaves_df['Validation AUC'] ==
max_auc



max_leaves_df[max_ix]

This should return a row of the data frame:

Figure 6.7: Optimal max_leaves

By using the lossguide grow policy, we can achieve performance at least
as good as anything else we've tried so far. One key advantage of the
lossguide policy is that, for larger datasets, it can result in training times
that are faster than the depthwise policy, especially for smaller values of
max_leaves. While the dataset here is small enough that this is not of
practical importance, this speed may be desirable in other applications.
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Explaining Model Predictions with SHAP Values

Along with cutting-edge modeling techniques such as XGBoost, the practice
of explaining model predictions has undergone substantial development in
recent years. So far, we've learned that logistic regression coefficients, or
feature importances from random forests, can provide insight into the
reasons for model predictions. A more powerful technique for explaining
model predictions was described in a 2017 paper, A Unified Approach to
Interpreting Model Predictions, by Scott Lundberg and Su-In Lee
(https://arxiv.org/abs/1705.07874). This technique is known as SHAP
(SHapley Additive exPlanations) as it is based on earlier work by
mathematician Lloyd Shapley. Shapely developed an area of game theory to
understand how coalitions of players can contribute to the overall outcome
of a game. Recent machine learning research into model explanation
leveraged this concept to consider how groups or coalitions of features in a
predictive model contribute to the output model prediction. By considering
the contribution of different groups of features, the SHAP method can isolate
the effect of individual features.

Note

At the time of writing, the SHAP library used in Chapter 6, Gradient
Boosting, XGBoost, and SHAP Values, is not compatible with Python 3.9.
Hence, if you are using Python 3.9 as your base environment, we suggest
that you set up a Python 3.8 environment as described in the Preface.

Some notable aspects of using SHAP values to explain model predictions
include:

SHAP values can be used to make individualized explanations of
model predictions; in other words, the prediction of a single sample, in
terms of the contribution of each feature, can be understood using
SHAP. This is in contrast to the feature importance method of
explaining random forests that we've already seen, which only

https://arxiv.org/abs/1705.07874


considers the average importance of a feature across the model training
set.

SHAP values are calculated relative to a background dataset. By
default, this is the training data, although other datasets can be supplied.

SHAP values are additive, meaning that for the prediction of an
individual sample, the SHAP values can be added up to recover the
value of the prediction, for example, a predicted probability.

There are different implementations of the SHAP method for various types
of models and here we will focus on SHAP for trees (Lundberg et al., 2019,
https://arxiv.org/abs/1802.03888) to get insights into XGBoost model
predictions on our validation set of synthetic data. First, let's refit
xgb_model_3 from the previous section with the optimal number of
max_leaves, 20:

%%time

xgb_model_3.set_params(**{'max_leaves':20})

xgb_model_3.fit(X_train, y_train,\

                eval_set=eval_set,\

                eval_metric='auc',

                verbose=False,\

                early_stopping_rounds=30)

Now we're ready to start calculating SHAP values for the validation dataset.
There are 40 features and 1,000 samples here:

X_val.shape

This should output the following:

(1000, 40)

https://arxiv.org/abs/1802.03888


To automatically label the plots we can make with the shap package, we'll
put the validation set features in a data frame with column names. We'll use a
list comprehension to make generic feature names, for example, "Feature 0,
Feature 1, …" and create the data frame as follows:

feature_names = ['Feature
{number}'.format(number=number)

                 for number in
range(X_val.shape[1])]

X_val_df = pd.DataFrame(data=X_val,
columns=feature_names)

X_val_df.head()

The dataframe head should look like this:

Figure 6.8: Data frame of the validation features

With the trained model, xgb_model_3, and the data frame of validation
features, we're ready to create an explainer interface. The SHAP package
has various kinds of explainers and we'll use the one specifically for tree
models:

explainer = shap.explainers.Tree(xgb_model_3,
data=X_val_df)

This has created an explainer using the model validation data as the
background dataset. Now we are ready to use the explainer to obtain SHAP



values. The SHAP package makes this very simple. All we need to do is pass
in the dataset we want explanations for:

shap_values = explainer(X_val_df)

That's all there is to it! What is this variable, shap_values, that has been
created? If you examine the contents of the shap_values variable
directly, you will see that it contains three attributes. The first is values,
which contains the SHAP values. Let's examine the shape:

shap_values.values.shape

This should return the following:

(1000, 40)

Because SHAPs provide individualized explanations, there is a row for each
of the 1,000 samples in the validation set. There are 40 columns because we
have 40 features and SHAP values tell us the contribution of each feature to
the prediction for each sample. shap_values also contains a
base_values attribute, which is the naïve prediction before any feature
contributions are considered, also defined as the average prediction across
the entire dataset. There is one of these for each sample (1,000). Finally,
there is also a data attribute, which contains the feature values. All of this
information can be combined in various ways to explain model predictions.

Thankfully, not only does the shap package provide fast and convenient
methods for calculating SHAP values, but it also provides a rich suite of
visualization techniques. One of the most popular is a SHAP summary plot,
which visualizes the contribution of each feature to each sample. Let's create
this plot and then understand what is being shown. Please note that most
interesting SHAP visualizations use color, so if you're reading in black and
white, please refer to the GitHub repository for color figures:

mpl.rcParams['figure.dpi'] = 75

shap.summary_plot(shap_values.values, X_val_df)



This should produce the following:

Figure 6.9: SHAP summary plot for the synthetic data validation set

Note

If you're reading the print version of this book, you can download and
browse the color versions of some of the images in this chapter by visiting
the following link: https://packt.link/ZFiYH

https://packt.link/ZFiYH


Figure 6.9 contains a lot of information to help us explain the model. The
summary plot may contain up to 40,000 plotted points, one for each of the
40 features and each of the 1,000 validation samples (although only the first
20 features are shown by default). Let's start by understanding the x axis.
The SHAP value indicates the additive contribution of each feature value to
the prediction for a sample. SHAP values are shown here relative to the
expected values, which are the base_values described earlier. So if a
given feature has a small impact on the prediction for a given sample, it will
not tend to move the prediction very far from the expected value, and the
SHAP value will be close to zero. However if a feature has a large effect,
which, in the case of our binary classification problem, means that the
predicted probability will be pushed closer to 0 or 1, the SHAP value will be
further from 0. Negative SHAP values indicate a feature moving the
prediction closer to 0, and positive SHAP values indicate closer to 1.

Note that the SHAP values shown in Figure 6.9 cannot be directly
interpreted as predicted probabilities. By default, SHAP values for the
XGBoost binary classification model with the binary:logistic
objective function are calculated and plotted using the log-odds
representation of probability, which was introduced in Chapter 3, Details of
Logistic Regression and Feature Exploration in the Why Is Logistic
Regression Considered a Linear Model? section. This means that they can
be added and subtracted, or in other words, we can perform linear
transformations on them.

What about the color of the dots in Figure 6.9? These represent the values of
the features for each sample, with red meaning a higher value and blue
lower. So, for example, we can see in the fourth row of the plot that the
lowest SHAP values come from high feature values (red dots) for Feature
29.

The vertical arrangement of the dots, in other words, the width of the band of
dots for each feature, indicates how many dots there are at that location on
the x axis. If there are many samples, the band of dots will be wider.



The vertical arrangement of features in the diagram is based on feature
importance. The most important features, in other words, those with the
largest average effect (mean absolute SHAP value) on model predictions, are
placed at the top of the list.

While the summary plot in Figure 6.9 is a great way to look at all of the
most important features and their SHAP values at once, it may not reveal
some interesting relationships. For example, the most important feature,
Feature 3, appears to have a large clump of purple dots (middle of the range
of feature values) that have positive SHAP values, while the negative SHAP
values for this feature may result from high or low feature values.

What is going on here? Often, when the effects of features seem unclear
from a SHAP summary plot, the tree-based model we are using is capturing
interaction effects between features. To gain additional insight into
individual features and their interactions with others, we can use a SHAP
scatter plot. Firstly, let's make a simple scatter plot of the SHAP values of
Feature 3. Note that we can index the shap_values object in a similar
way to a data frame:

shap.plots.scatter(shap_values[:,'Feature 3'])

This should produce the following plot:



Figure 6.10: Scatter plot of SHAP values for Feature 3

From Figure 6.10, we can tell pretty much the same information that we
could from the summary plot of Figure 6.9: feature values in the middle of
the range have high SHAP values, while those at the extremes are lower.
However, the scatter method also allows us to color the points of the
scatter plot by another feature value, so we can see whether there are
interactions between the features. We'll color points by the second most
important feature, Feature 5:

shap.plots.scatter(shap_values[:,'Feature 3'],

                   color=shap_values[:,'Feature
5'])

The resulting plot should look like this:



Figure 6.11: Scatter plot of SHAP values for Feature 3, colored by
feature values of Feature 5. Arrows A and B indicated interesting

interaction effects between these features

Figure 6.11 shows an interesting interaction between Feature 3 and Feature
5. When samples are in the middle of the range of feature values for Feature
3, in other words, at the top of the hump shape in Figure 6.11, the color of
dots appears to get more red going from the bottom to the top of the cluster
of dots here (arrow A). This means that for feature values in the middle of
the Feature 3 range, as the value of Feature 5 increases, so does the SHAP
value for Feature 3. We can also see that as feature values of Feature 3
increase along the x axis from the middle toward the top of the range, this
relationship reverses to where higher feature values for Feature 5 begin to
correspond to lower SHAP values for Feature 3 (arrow B). So the interaction
with Feature 5 appears to have a substantial impact on the SHAP values for
Feature 3.

The complex relationships depicted in Figure 6.11 show how increasing a
feature value may lead to either increasing or decreasing SHAP values when
interaction effects are present. The specific reasons for the patterns in Figure



6.11 relate to the creation of the synthetic dataset we are modeling, where we
specified multiple clusters in the feature space. As discussed in Chapter 5,
Decision Trees and Random Forests, in the Using Decision Trees:
Advantages and Predicted Probabilities section, tree-based models such as
XGBoost are able to effectively model clusters of points in multi-
dimensional feature space that belong to a certain class. SHAP explanations
can help us to understand how the model is making these representations.

Here, we've used synthetic data, and the features have no real-world
interpretation, so we can't assign any meaning to interactions we observe.
However, with real-world data, detailed exploration with SHAP values and
interactions can provide insight into how a model is representing complex
relationships between attributes of customers or users, for example. SHAP
values are also useful since they can provide explanations relative to any
background dataset. While logistic regression coefficients and feature
importances of random forests are determined entirely by the model training
data, SHAP values can be calculated for any background dataset; so far in
this chapter, we've been using the validation data. This provides an
opportunity, when predicted models are deployed in a production
environment, to understand how new predictions are being made. If the
SHAP values for new predictions are very different from those of model
training and test data, this may indicate that the nature of incoming data has
changed, and it may be time to consider developing a new model. We'll
consider these practical aspects of using models in the real world in the
final chapter.
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Exercise 6.02: Plotting SHAP Interactions, Feature Importance,
and Reconstructing Predicted Probabilities from SHAP Values

In this exercise, you'll become more familiar with using SHAP values to provide
visibility into the workings of a model. First, we'll take an alternate look at the
interaction between Features 3 and 5, and then use SHAP values to calculate
feature importances similar to what we did with a random forest model in
Chapter 5, Decision Trees and Random Forests. Finally, we'll see how model
outputs can be obtained from SHAP values, taking advantage of their additive
property:

Note

The Jupyter notebook for this exercise can be found at https://packt.link/JcMoA.

1. Given the preliminary steps accomplished in this section already, we can
take another look at the interaction between Features 3 and 5, the two most
important features of the synthetic dataset. Use the following code to make
an alternate version of Figure 6.11, except this time, look at the SHAP
values of Feature 5, colored by those of Feature 3:

shap.plots.scatter(shap_values[:,'Feature 5'],

                   color=shap_values[:,'Feature
3'])

The resulting plot should look like this:

https://packt.link/JcMoA


Figure 6.12: Scatter plot of SHAP values for Feature 5, colored by
feature values of Feature 3

As opposed to Figure 6.11, here we are seeing the SHAP values of Feature 5.
In general, from the scatter plot, we can see that SHAP values tend to
increase as feature values increase for Feature 5. However there are certainly
counterexamples to that general trend, as well as an interesting interaction
with Feature 3: for a given value of Feature 5, which can be thought of as a
vertical slice from the image, the color of the dots can either become more
red, going from the bottom to the top, for negative feature values, or less red
for positive feature values. This means that for a given value of Feature 5, its
SHAP value depends on the value of Feature 3. This is a further illustration
of the interesting interaction between Features 3 and 5. In a real project,
which plot you would choose to show depends on what kind of story you
want to tell with the data, relating to what real-world quantities Features 3
and 5 might represent.

2. Create a feature importance bar plot using the following code:

mpl.rcParams['figure.dpi'] = 75

shap.summary_plot(shap_values.values, X_val,
plot_type='bar')



Figure 6.13: Feature importance bar plot using SHAP values

The feature importance bar plot gives a visual presentation of information
similar to that obtained in Exercise 5.03, Fitting a Random Forest, in
Chapter 5, Decision Trees and Random Forests, with a random forest: this is
a single number for each feature, representing how important it is overall for
a dataset.

Do these results make sense? Recall that we created this synthetic data with
three informative features and two redundant ones. In Figure 6.13, it appears
that there are four features that are substantially more important than all the
others, so perhaps one of the redundant features was created in such a way
that XGBoost selected it for splitting nodes fairly often, but the other
redundant feature was not used as much.



Compared to the feature importances we found in Chapter 5, Decision Trees
and Random Forests, the ones here are a bit different. The feature
importances we can obtain from scikit-learn for a random forest model are
calculated using the decrease in node impurity due to the feature as well as
the fraction of training samples split by the feature. By contrast, feature
importances using SHAP values are calculated as follows: first, the absolute
value of all the SHAP values (shap_values.values) is taken, then an
average of all the samples is taken for each feature, as implied by the x axis
label. The interested reader can confirm this by calculating these metrics
directly from shap_values.

Now that we've familiarized ourselves with a range of uses of SHAP values,
let's see how their additive property allows the reconstruction of
predicted probabilities.

3. SHAP values are calculated relative to the expected value, or base value, of a
model. This can be interpreted as the average prediction over all samples in
the background dataset. However, the prediction will be in units of log-odds
as opposed to probability, as mentioned earlier, to support additivity. The
expected value of a model can be accessed from the explainer object as
follows:

explainer.expected_value

The output should look like this:

-0.30949621941894295

This information isn't particularly useful on its own. However, it gives us the
baseline from which we can reconstruct predicted probabilities.

4. Recall that the shape of the SHAP values matrix is the number of samples by
the number of features. In our exercise with the validation data, here that
would be 1,000 by 40. To add up all the SHAP values for each sample, we
therefore want to take a sum over the column axis (axis=1). This adds all
the feature contributions, effectively providing the offset from the expected
value. If we add the expected value to this, we then have the following
predictions:



shap_sum = shap_values.values.sum(axis=1) +
explainer.expected_value

shap_sum.shape

This should return the following:

(1000,)

Indicating we now have a single number for each sample. However, these
predictions are in log-odds space. To transform them to probability space, we
need to apply the logistic function introduced in Chapter 3, Details of
Logistic Regression and Feature Exploration.

5. Apply the logistic transformation to log-odds predictions like this:

shap_sum_prob = 1 / (1 + np.exp(-1 * shap_sum))

Now we'd like to compare the predicted probabilities obtained from SHAP
values with direct model output for confirmation.

6. Obtain predicted probabilities for the model validation set and check the
shape with this code:

y_pred_proba = xgb_model_3.predict_proba(X_val)
[:,1]

y_pred_proba.shape

The output should be as follows:

(1000,)

This is the same shape as our SHAP-derived predictions, as expected.

7. Put the model output and sums of SHAP values together in a data frame for
side-by-side comparison, and spot check a random selection of five rows:

df_check = pd.DataFrame(

    {'SHAP sum':shap_sum_prob,

     'Predicted probability':y_pred_proba})



df_check.sample(5, random_state=1)

The output should confirm that the two methods have identical results:

Figure 6.14: Comparison of SHAP-derived predicted probabilities and
those obtained directly from XGBoost

The spot check indicates that these five samples have identical values. While
the values may not be precisely equal due to rounding errors of machine
arithmetic, you could use NumPy's allclose function to ensure they're
the same within a user-configurable amount of rounding error.

8. Ensure that the SHAP-derived probabilities and model output probabilities
are all very close to each other like this:

np.allclose(df_check['SHAP sum'],\

            df_check['Predicted probability'])

The output should be as follows:

True

This indicates that all elements of both columns are equal within rounding
error. allclose is useful for when rounding errors are present and exact
equality (testable with np.array_equal) would not hold.

By now, you should be getting an impression of the power of SHAP values to
help understand machine learning models. The sample-specific, individualized
nature of SHAP values opens up the possibility of very detailed analyses, which
could help answer a wide variety of potential questions from business
stakeholders such as "How would the model make predictions for people like



this?" or "Why did the model make this prediction for this specific person"? Now
that we're familiar with XGBoost and SHAP values, two state-of-the-art machine
learning techniques, we return to the case study data to apply them.
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Missing Data

As a final note on the use of both XGBoost and SHAP, one valuable trait of
both packages is their ability to handle missing values. Recall that in
Chapter 1, Data Exploration and Cleaning, we found that some samples in
the case study data had missing values for the PAY_1 feature. So far, our
approach has been to simply remove these samples from the dataset when
building models. This is because, without specifically addressing the
missing values in some way, the machine learning models implemented by
scikit-learn cannot work with the data. Ignoring them is one approach,
although this may not be satisfactory as it involves throwing data away. If
it's a very small fraction of the data, this may be fine; however, in general,
it's good to be able to know how to deal with missing values.

There are several approaches for imputing missing values of features, such
as filling them in with the mean or mode of the non-missing values of that
feature, or a randomly selected value from the non-missing values. You can
also build a model outputting the feature in question as the response
variable, with all the other features acting as features for this new model,
and then predict the missing feature values. These approaches were
explored in the first edition of this book (https://packt.link/oLb6C).
However, since XGBoost typically performs at least as well as other
machine learning models for binary classification tasks with tabular data
like we're using here, and handles missing values, we'll forego more in-
depth exploration of imputing missing values and let XGBoost do the work
for us.

How does XGBoost handle missing data? At every opportunity to split a
node, XGBoost considers only the non-missing feature values. If a feature
with missing values is chosen to make a split, the samples with missing
values for that feature are then sent down the optimal path to one of the
child nodes, in terms of minimizing the loss function.
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Saving Python Variables to a File

In the activity for this chapter, to write to and read from files we'll use a
new python statement (with) and the pickle package. with statements
make it easier to work with files since they both open and close the file,
instead of the user needing to do this separately. You can use code snippets
like this to save variables to a file:

with open('filename.pkl', 'wb') as f:

    pickle.dump([var_1, var_2], f)

where filename.pkl is your chosen file path, 'wb' indicates the file is
open for writing in a binary format, and pickle.dump saves a list of
variables var_1 and var_2 to the file. To open this file and load these
variables, possibly into a separate Jupyter Notebook, the code is similar but
now the file needs to be opened for reading in a binary format ('rb'):

with open('filename.pkl', 'rb') as f:

    var_1, var_2 = pickle.load(f)
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Activity 6.01: Modeling the Case Study Data with XGBoost
and Explaining the Model with SHAP

In this activity, we'll take what we've learned in this chapter with a synthetic
dataset and apply it to the case study data. We'll see how an XGBoost
model performs on a validation set and explain the model predictions using
SHAP values. We have prepared the dataset for this activity by replacing
the samples that had missing values for the PAY_1 feature, that we had
previously ignored, while maintaining the same train/test split for the
samples with no missing values. You can see how the data was prepared in
the Appendix to the notebook for this activity.

Note

The Jupyter notebook containing the solution as well as the appendix can
be found here: https://packt.link/YFb4r.

1. Load the case study data that has been prepared for this exercise. The
file path is ../../Data/Activity_6_01_data.pkl and the
variables are: features_response, X_train_all,
y_train_all, X_test_all, y_test_all.

2. Define a validation set to train XGBoost with early stopping.

3. Instantiate an XGBoost model. Use the lossguide grow policy to
enable the examination of validation set performance for several
values of max_leaves.

4. Create a list of values of max_leaves from 5 to 200, counting by
5's.

5. Create the evaluation set for early stopping.

https://packt.link/YFb4r


6. Loop through hyperparameter values and create a list of validation
ROC AUCs, using the same technique as in Exercise 6.01:
Randomized Grid Search for Tuning XGBoost Hyperparameters.

7. Create a data frame of the hyperparameter search results and plot the
validation AUC against max_leaves.

8. Observe the number of max_leaves corresponding to the highest
ROC AUC on the validation set.

9. Refit the XGBoost model with the optimal hyperparameter. So that we
can examine SHAP values for the validation set, make a data frame of
this data.

10. Create a SHAP explainer for our new model using the validation data
as the background dataset, obtain the SHAP values, and make a
summary plot.

11. Make a scatter plot of LIMIT_BAL SHAP values, colored by the
feature with the strongest interaction.

12. Save the trained model along with the training and test data to a file.

Note

The solution to this activity can be found via this link.
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Summary

In this chapter, we've learned some of the most cutting-edge techniques for
building machine learning models with tabular data. While other types of
data, such as image or text data, warrant exploration with different types of
models such as neural networks, many standard business applications
leverage tabular data. XGBoost and SHAP are some of the most advanced
and popular tools you can use to build and understand models with this kind
of data. Having gained familiarity and practical experience using these tools
with synthetic data, in the following activity, we return to the dataset for the
case study and see how we can use XGBoost to model it, including the
samples with missing feature values, and use SHAP values to understand
the model.
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7. Test Set Analysis, Financial Insights, and Delivery to the
Client

Overview

This chapter presents several techniques for analyzing a model test set for
deriving insights into likely model performance in the future. These
techniques include the same model performance metrics we've already
calculated, such as the ROC AUC, as well as new kinds of visualizations,
such as the sloping of default risk by bins of predicted probability and the
calibration of predicted probability. After reading this chapter, you will be
able to bridge the gap between the theoretical metrics of machine learning
and the financial metrics of the business world. You will be able to identify
key insights while estimating the financial impact of a model and provide
guidance to the client on how to realize this impact. We close with a
discussion of the key elements to consider when delivering and deploying a
model, such as the format of delivery and ways to monitor the model as it is
being used.
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Introduction

In the previous chapter, we used XGBoost to push model performance even
higher than all our previous efforts and learned how to explain model
predictions using SHAP values. Now, we will consider model building to be
complete and address the remaining issues that need attention before
delivering the model to the client. The key elements of this chapter are
analysis of the test set, including financial analysis, and things to consider
when delivering a model to a client who wants to use it in the real world.

We look at the test set to get an idea of how well the model will perform in
the future. By calculating metrics we already know, like the ROC AUC, but
now on the test set, we can gain confidence that our model will be useful
for new data. We'll also learn some intuitive ways to visualize the power of
the model for grouping customers into different levels of risk of default,
such as a decile chart.

Your client will likely appreciate the efforts you made in creating a more
accurate model or one with a higher ROC AUC. However, they will
definitely appreciate understanding how much money the model can help
them earn or save and will probably be happy to receive specific guidance
on how to maximize the model's potential for this. A financial analysis of
the test set can simulate different scenarios of model-based strategies and
help the client pick one that works for them.

After completing the financial analysis, we will wrap up by discussing how
to deliver a model for use by the client and how to monitor its performance
over time.

OceanofPDF.com

https://oceanofpdf.com/


Review of Modeling Results

In order to develop a binary classification model to meet the business
requirements of our client, we have now tried several modeling techniques
with varying degrees of success. In the end, we'd like to choose the model
with the best performance to do further analyses on and present to our client.
However, it is also good to communicate the other options we explored,
demonstrating a thoroughly researched project.

Here, we review the different models that we tried for the case study
problem, the hyperparameters that we needed to tune, and the results from
cross-validation, or the validation set in the case of XGBoost. We only
include the work we did using all possible features, not the earlier
exploratory models where we used only one or two features:



Figure 7.1: Summary of modeling activities with case study data

When presenting results to the client, you should be prepared to interpret
them for business partners at all levels of technical familiarity, including
those with very little technical background. For example, business partners
may not understand the derivation of the ROC AUC measure; however, this
is an important concept since it's the main performance metric we used to
assess models. You may need to explain that it's a metric that can vary
between 0.5 and 1 and give intuitive explanations for these limits: 0.5 is no
better than a coin flip and 1 is perfection, which is essentially unattainable.

Our results are somewhere in between, getting close to 0.78 with the best
model we developed. While the ROC AUC of a given model may not
necessarily be meaningful by itself, Figure 7.1 shows that we've tried several
methods and have achieved improved performance above our initial
attempts. In the end, for a business application like the case study, abstract
model performance metrics like the ROC AUC should be accompanied by a
financial analysis if possible. We will explore this later in this chapter.

Note: on Interpreting the ROC AUC

An interesting interpretation of the ROC AUC score is the probability that
for two samples, one with a positive outcome and one with a negative
outcome, the positive sample will have a higher predicted probability than
the negative sample. In other words, for all possible pairs of positive and
negative samples in the dataset being assessed, the proportion of pairs
where the positive sample has a higher model prediction than the negative
sample is equivalent to the ROC AUC.

From Figure 7.1, we can see that for the case study, our efforts in creating
more complex models, either by engineering new features to add to a simple
logistic regression or by creating an ensemble of decision trees, yielded
better model performance. In particular, the random forest and XGBoost
models perform similarly, although these validation scores are technically
not directly comparable since in the case of random forest we excluded
missing values and used 4-fold cross-validation, while for XGBoost the



missing values were included and there was just one validation set that was
used for early stopping. However, Figure 7.1 provides an indication that
either XGBoost or random forest would probably be the best choice. We'll
move forward here with the XGBoost model.

Now that we've decided which model we'll deliver, it's good to consider
additional things we could have tried in the model development process.
These concepts won't be explored in this book, but you may wish to
experiment with them on your own.
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Feature Engineering

Another way to increase model performance that we touched on briefly is
feature engineering. While we used scikit-learn's automated feature
engineering capabilities to make interaction features, you can also manually
engineer features from existing features. For example, a credit account that
is using a large percentage of its credit limit may be considered particularly
risky. We have information in our features about the credit limit, and also
the amounts of past bills. In fact, the most important feature in the XGBoost
model we trained in Activity 6.01, Modeling the Case Study Data with
XGBoost and Explaining the Model with SHAP was the credit limit feature
LIMIT_BAL. The feature with the strongest interaction with this was the
bill amount from two months ago. Although XGBoost can find interactions
like this and model them to some extent, we could also engineer a new
feature: the ratio of past monthly billed amounts to the credit limit,
assuming the billed amount is the account's balance. This measure of credit
utilization may be a stronger feature, and result in better model
performance when calculated in this way, than having the credit limit and
monthly billed amounts available to the model separately.

Feature engineering may take the form of manipulating existing features to
make new ones, as in the previous example, or it may involve bringing in
entirely new data sources and creating features with them.

The inspiration for new features may come from domain knowledge: it can
be very helpful to have a conversation with your business partner about
what they think good features might be, especially if they have more
domain knowledge than you for the application you're on. Examining the
interactions of existing features can also be a way to hypothesize new
features, such as how we saw an interaction that seems related to credit
utilization in Activity 6.01, Modeling the Case Study Data with XGBoost
and Explaining the Model with SHAP.
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Ensembling Multiple Models

In choosing the final model to deliver for the case study project, it would
probably be fine to deliver either random forest or XGBoost. Another
commonly used approach in machine learning is to ensemble together
multiple models. This means combining the predictions of different models,
similar to how random forest and XGBoost combine many decision trees.
But in this case, the way to combine model predictions is up to the data
scientist. A simple way to create an ensemble of models is to take the
average of their predictions.

Ensembling is often done when there are multiple models, perhaps different
kinds of models or models trained with different features that all have good
performance. In our case, it may be that using the average prediction from
the random forest and XGBoost would have better performance than either
model on its own. To explore this, we could compare performance on a
validation set, for example, the one used for early stopping in XGBoost.
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Different Modeling Techniques

Depending on how much time you have for a project and your expertise in
different modeling techniques, you will want to try as many methods as
possible. More advanced methods, such as neural networks for
classification, may yield improved performance on this problem. We
encourage you to continue your studies and learn how to use these models.
However, for tabular data such as what we have for the case study,
XGBoost is a good de facto choice and will likely provide excellent
performance, if not the best performance of all methods.
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Balancing Classes

Note that we did not address the class imbalance in the response variable.
You are encouraged to try fitting models with the
class_weight='balanced' option in scikit-learn or using the
scale_pos_weight hyperparameter in XGBoost, to see the effect.

While these would be interesting avenues for further model development,
for the purposes of this book, we are done with model building at this point.
We'll move forward to examine XGBoost model performance on the test
set.
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Model Performance on the Test Set

We already have some idea of the out-of-sample performance of the
XGBoost model, from the validation set. However, the validation set was
used in model fitting, via early stopping. The most rigorous estimate of
expected future performance we can make should be created with data that
was not used at all for model fitting. This was the reason for reserving a test
dataset from the model building process.

You may notice that we did examine the test set to some extent already, for
example, in the first chapter when assessing data quality and doing data
cleaning. The gold standard for predictive modeling is to set aside a test set
at the very beginning of a project and not examine it at all until the model is
finished. This is the easiest way to make sure that none of the knowledge
from the test set has "leaked" into the training set during model
development. When this happens, it opens up the possibility that the test set
is no longer a realistic representation of future, unknown data. However, it
is sometimes convenient to explore and clean all of the data together, as
we've done. If the test data has the same quality issues as the rest of the
data, then there would be no leakage. It is most important to make sure
you're not looking at the test set when you decide which features to use, fit
various models, and compare their performance.

We begin the test set examination by loading the trained model from
Activity 6.01, Modeling the Case Study Data with XGBoost and Explaining
the Model with SHAP along with the training and test data and feature
names, using Python's pickle:

with open('../../Data/xgb_model_w_data.pkl',
'rb') as f:

    features_response, X_train_all, y_train_all,
X_test_all,\

    y_test_all, xgb_model_4 = pickle.load(f)



With these variables loaded in the notebook, we can make predictions for
the test set and analyze them. First obtain the predicted probabilities for the
test set:

test_set_pred_proba =
xgb_model_4.predict_proba(X_test_all)[:,1]

Now import the ROC AUC calculation routine from scikit-learn, use it to
calculate this metric for the test set, and display it:

from sklearn.metrics import roc_auc_score

test_auc = roc_auc_score(y_test_all,
test_set_pred_proba)

test_auc

The result should be as follows:

0.7735528979671706

The ROC AUC of 0.774 on the test set is a bit lower than the 0.779 we saw
on the validation set for the XGBoost model; however, it is not very
different. Since the model fitting process optimized the model for
performance on the validation set, it's not totally surprising to see somewhat
lower performance on new data. Overall, the testing performance is in line
with expectations and we can consider this model successfully tested in
terms of the ROC AUC metric.

While we won't do this here, a final step before delivering a trained model
might be to fit it on all of the available data, including the unseen test set.
This could be done by concatenating the training and testing data features
(X_train_all, X_test_all) and labels (y_train_all,
y_test_all), and using them to fit a new model, perhaps by defining a
new validation set for early stopping or using the current test set for that
purpose. This approach is motivated by the idea that machine learning
models generally perform better when trained on more data. The downside



is that since there would be no unseen test set in these circumstances, the
final model could be considered to be untested.

Data scientists have varying opinions on which approach to use: only using
the unseen test set for model assessment versus using as much data as
possible, including the test set, to train the final model once all previous
steps in the process are completed. One consideration is whether or not a
model would benefit from being trained on more data. This could be
determined by constructing a learning curve. Although we won't illustrate
this here, the concept behind a learning curve is to train a model on
successively increasing amounts of data and calculating the validation score
on the same validation set. For example, if you had 10,000 training
samples, you might set aside 500 as a validation set and then train a model
on the first 1,000 samples, then the first 2,000 samples, and so on, up to all
9,500 samples that aren't in the validation set. If training on more data
consistently increases the validation score even up to the point of using all
available data, this is a sign that training on more data than you have in the
training set would be beneficial. However, if model performance starts to
level off at some point and it doesn't seem like additional data would create
a more performant model, you may not need to do this. Learning curves can
provide guidance on which approach to take with the test set, as well as
whether more data is needed in a project generally.

For the purposes of the case study, we'll assume that we wouldn't realize
any benefit from refitting the model using the test set. So, our main
concerns now are presenting the model to the client, helping them design a
strategy to use it to meet their business goals, and providing guidance on
how the model's performance can be monitored as time goes on.
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Distribution of Predicted Probability and Decile Chart

The ROC AUC metric is helpful because it provides a single number that
summarizes model performance on a dataset. However, it's also insightful to
look at model performance for different subsets of the population. One way
to break up the population into subsets is to use the model predictions
themselves. Using the test set, we can visualize the predicted probabilities
with a histogram:

mpl.rcParams['figure.dpi'] = 400

plt.hist(test_set_pred_proba, bins=50)

plt.xlabel('Predicted probability')

plt.ylabel('Number of samples')

This code should produce the following plot:



Figure 7.2: Distribution of predicted probabilities for the test set

The histogram of predicted probabilities for the test set shows that most
predictions are clustered in the range [0, 0.2]. In other words, most
borrowers have between a 0 and 20% chance of default, according to the
model. However, there appears to be a small cluster of borrowers with a
higher risk, centered near 0.7.

A visually intuitive way to examine model performance for different regions
of predicted default risk is to create a decile chart, which groups borrowers
together based on the decile of predicted probability. Within each decile, we
can compute the true default rate. We would expect to see a steady increase
in the default rate from the lowest prediction deciles to the highest.

We can compute deciles like we did in Exercise 6.01, Randomized Grid
Search for Tuning XGBoost Hyperparameters, using pandas' qcut:

deciles, decile_bin_edges =
pd.qcut(x=test_set_pred_proba,\

                                    q=10,\

                                    retbins=True)

Here we are splitting the predicted probabilities for the test set, supplied with
the x keyword argument. We want to split them into 10 equal-sized bins,
with the bottom 10% of predicted probabilities in the first bin, and so on, so
we indicate we want q=10 quantiles. However, you can split into any
number of bins you want, such as 20 (ventiles) or 5 (quintiles). Since we
indicate retbins=True, the bin edges are returned in the
decile_bin_edges variable, while the series of decile labels is in
deciles. We can examine the 11 bin edges needed to create 10 bins:

decile_bin_edges

That should produce this:



array([0.02213463, 0.06000734, 0.08155108,
0.10424594, 0.12708404,

       0.15019046, 0.18111563, 0.23032923,
0.32210371, 0.52585585,

       0.89491451])

In order to make use of the decile series, we can combine it with the true
labels for the test set, and the predicted probabilities, into a DataFrame:

test_set_df = pd.DataFrame({'Predicted
probability':test_set_pred_proba,\

                            'Prediction
decile':deciles,\

                            'Outcome':y_test_all}
)

test_set_df.head()

The first few rows of the DataFrame should look like this:

Figure 7.3: DataFrame with predicted probabilities and deciles

In the DataFrame, we can see that each sample is labeled with a decile bin,
indicated using the edges of the bin that contains the predicted probability.
The outcome shows the true label. What we want to show in our decile chart
is the true default rate within the decile bins. For this, we can use pandas'



groupby capabilities. First, we create a groupby object, by grouping our
DataFrame on the decile column:

test_set_gr = test_set_df.groupby('Prediction
decile')

The groupby object can be aggregated by other columns. In particular,
here we're interested in the default rate within decile bins, which is the mean
of the outcome variable. We also calculate a count of the data in each bin.
Since quantiles, such as deciles, group the population into equal-sized bins,
we expect the counts to be the same or similar:

gr_df = test_set_gr.agg({'Outcome':['count',
'mean']})

Examine our grouped DataFrame, gr_df:

Figure 7.4: Default rate in deciles of predicted probability on the test set



In Figure 7.4, we can see that indeed the counts are nearly equal in all bins.
We also can tell that the true default rate increases with the decile, as we
hope and expect since we know our model has good performance. Before
visualizing the data, it's worth noting that this DataFrame has a special kind
of column index called a multiindex. Notice that there are two lines of text
describing the columns, a top-level index that only contains one label
Outcome and a second-level index with the labels count and mean.
Accessing data in DataFrames that have a multiindex is a little more
complicated than for the DataFrames we've worked with previously. We can
display the column index as follows:

gr_df.columns

That should produce the following result:

MultiIndex([('Outcome', 'count'),

            ('Outcome', 'mean')],

           )

Here we can see that to access a column from a multiindex, we need to use
tuples that specify each level of the index, for example,
gr_df[('Outcome','count')]. While here the MultiIndex isn't
really necessary since we've only done an aggregation of one column
(Outcome), it can come in handy when there are aggregations on multiple
columns.

Now we'd like to create a visualization, showing how the model predictions
do a good job of binning borrowers into groups with consistently increasing
default risk. We're going to show the counts in each bin, as well as the
default risk in each bin. Because these columns are on different scales, with
counts in the hundreds and risk between 0 and 1, we should use a dual y-axis
plot. In order to have more control over plot appearance, we'll create this
plot using Matplotlib functions instead of doing it through pandas. First, we
create the plot of sample size in each bin, labeling the y-axis ticks with the
same color as the plot for clarity. Please see the notebook on GitHub if



you're reading in black and white, as color is important for this plot. This
code snippet should be run in the same cell as the next one. Here we create a
set of axes, then add a plot to it along with some formatting and annotation:

ax_1 = plt.axes()

color_1 = 'tab:blue'

gr_df[('Outcome', 'count')].plot.bar(ax=ax_1,
color=color_1)

ax_1.set_ylabel('Count of observations',
color=color_1)

ax_1.tick_params(axis='y', labelcolor=color_1)

ax_1.tick_params(axis='x', labelrotation = 45)

Notice that we're creating a bar plot for the sample sizes. We'd like to add a
line plot to this, showing the default rate in each bin on a right-hand y-axis
but the same x-axis as the existing plot. Matplotlib makes a method called
twinx available for this purpose, which can be called on an axes object to
return a new axes object sharing the same x-axis. We take similar steps to
then plot the default rate and annotate:

ax_2 = ax_1.twinx()

color_2 = 'tab:red'

gr_df[('Outcome', 'mean')].plot(ax=ax_2,
color=color_2)

ax_2.set_ylabel('Default rate', color=color_2)

ax_2.tick_params(axis='y', labelcolor=color_2)

After running the preceding two snippets in a code cell, the following plot
should appear:



Figure 7.5: Default rate according to model prediction decile

Figure 7.5 contains the same information as displayed in the DataFrame in
Figure 7.4, but in a nicer presentation. It's clear that default risk increases
with each decile, where the riskiest 10% of borrowers have a default rate
close to 70%, but the least risky are below 10%. When a model is able to
effectively distinguish groups of borrowers with consistently increasing
default risk, the model is said to slope the population being examined.
Notice also that the default rate is relatively flat across the lowest 5 to 7
deciles, likely because these observations are mostly clustered in the range
[0, 0.2] of predicted risk, as seen in the histogram in Figure 7.2.

Splitting the test set into equal-population deciles is one way to examine
model performance, in terms of sloping default risk. However, a client may
be interested in looking at default rate by different groups, such as equal
interval bins (for example, binning together all observations in the prediction
ranges [0, 0.2), [0.2, 0.4), and so on, regardless of sample size in each bin),



or some other way. You'll explore how to easily do this in pandas in the
following exercise.

In the following exercise, we'll make use of a couple of statistical concepts
to help create error bars, including the standard error of the mean, which
we learned about previously, and the normal approximation to the
binomial distribution.

We know from Chapter 5, Decision Trees and Random Forests that we can

estimate the variance of the sample mean as , where n is the sample
size and  is the unobserved variance of a theoretical larger population.
While we don't know , it can be estimated by the variance of the sample
we observed. For binary variables, the sample variance can be calculated as
p(1-p), where p is the proportion of successes, or defaults for the case study.
Given the formula for the variance of the sample mean above, we can plug
in the observed variance, then take the square root to get the standard error

of the mean: . This formula is also known as the normal
approximation to the binomial distribution in some contexts. We'll use it
below to create error bars on an equal-interval chart of default rates for
different model prediction bins. For more details on these concepts, you are
encouraged to consult a statistics textbook.
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Exercise 7.01: Equal-Interval Chart

In this exercise, you will make a similar chart to that shown in Figure 7.5;
however, instead of splitting the test set into equal-population deciles of predicted
probability, you'll use equal intervals of predicted probability. Specifying the
intervals could be helpful if a business partner wants to think about potential
model-based strategies using certain score ranges. You can use pandas cut to
create equal-interval binnings, or custom binnings using an array of bin edges,
similar to how you used qcut to create quantile labels:

Note

You can find the Jupyter notebook for this exercise at https://packt.link/4Ev3n.

1. Create the series of equal-interval labels, for 5 bins, using the following
code:

equal_intervals, equal_interval_bin_edges = \

    pd.cut(x=test_set_pred_proba,\

           bins=5,\

           retbins=True)

Notice that this is similar to the call to qcut, except here with cut we can
say how many equal-interval bins we want by supplying an integer to the
bins argument. You could also supply an array for this argument to specify
the bin edges, for custom bins.

2. Examine the equal-interval bin edges with this code:

equal_interval_bin_edges

The result should be as follows:

array([0.02126185, 0.1966906 , 0.37124658,
0.54580256, 0.72035853,

       0.89491451])

https://packt.link/4Ev3n


You can confirm that these bin edges have equal intervals between them by
subtracting the subarray going from the first to the next-to-last item, from
the subarray starting with the second, and going to the end.

3. Check the intervals between bin edges like this:

equal_interval_bin_edges[1:] -
equal_interval_bin_edges[:-1]

The result should be this:

array([0.17542876, 0.17455598, 0.17455598,
0.17455598, 0.17455598])

You can see that the distance between the bin edges is roughly equal. The
first bin edge is a bit smaller than the minimum predicted probability, as you
can confirm for yourself.

In order to create a similar plot to Figure 7.5, first we need to put the bin
labels together with the response variable in a DataFrame, as we did
previously with decile labels. We also put the predicted probabilities in the
DataFrame for reference.

4. Make a DataFrame of predicted probabilities, bin labels, and the response
variable for the test set like this:

test_set_bins_df =\

pd.DataFrame({'Predicted
probability':test_set_pred_proba,\

              'Prediction bin':equal_intervals,\

              'Outcome':y_test_all})

test_set_bins_df.head()

The result should look as follows:



Figure 7.6: DataFrame with equal-interval bins

We can use this DataFrame to group by the bin labels, then get the metrics
we are interested in: aggregations that represent the default rate and the
number of samples in each bin.

5. Group by the bin label and calculate the default rate and sample count within
bins with this code:

test_set_equal_gr =
test_set_bins_df.groupby('Prediction bin')

gr_eq_df = test_set_equal_gr.agg({'Outcome':
['count', 'mean']})

gr_eq_df

The resulting DataFrame should appear like this:

Figure 7.7: Grouped data for five equal-interval bins



Notice that here, unlike with quantiles, there are a different number of
samples in each bin. The default rate appears to increase across bins in a
consistent manner. Let's plot this DataFrame to create a similar visualization
to Figure 7.5.

Before creating this visualization, in order to consider that the estimates of
default rate may be less robust for higher predicted probabilities, due to
decreased sample size in these ranges, we'll calculate the standard error of
the default rates.

6. Calculate the standard errors of the default rates within bins using this code:

p = gr_eq_df[('Outcome', 'mean')].values

n = gr_eq_df[('Outcome', 'count')].values

std_err = np.sqrt(p * (1-p) / n)

std_err

The result should appear as follows:

array([0.00506582, 0.01258848, 0.02528987,
0.02762643, 0.02683029])

Notice that for the bins with higher score ranges and fewer samples, the
standard error is larger. It will be helpful to visualize these standard errors
with the default rates.

7. Use this code to create an equal-interval plot of default rate and sample size.
The code is very similar to that needed for Figure 7.5, except here we
include error bars on the default rate plot using the yerr keyword and the
results from the previous step:

ax_1 = plt.axes()

color_1 = 'tab:blue'

gr_eq_df[('Outcome', 'count')].plot.bar(ax=ax_1,
color=color_1)

ax_1.set_ylabel('Count of observations',
color=color_1)



ax_1.tick_params(axis='y', labelcolor=color_1)

ax_1.tick_params(axis='x', labelrotation = 45)

ax_2 = ax_1.twinx()

color_2 = 'tab:red'

gr_eq_df[('Outcome', 'mean')].plot(ax=ax_2,
color=color_2,

                                   yerr=std_err)

ax_2.set_ylabel('Default rate', color=color_2)

ax_2.tick_params(axis='y', labelcolor=color_2)

The result should appear like this:

Figure 7.8: Plot of default rate and sample count for equal-interval bins

We can see in Figure 7.8 that the number of samples is pretty different among the
different bins, in contrast to the quantile approach. While there are relatively few
samples in the higher score bins, leading to a larger standard error, the error bars



on the plot of default rate are still small compared to the overall trend of an
increasing default rate from lower to higher score bins, so we can be confident in
this trend.

OceanofPDF.com

https://oceanofpdf.com/


Calibration of Predicted Probabilities

One interesting feature of Figure 7.8 is that the line plot of default rates
increases by roughly the same amount from bin to bin. Contrast this to the
decile plot in Figure 7.5, where the default rate increases slowly at first and
then more rapidly. Notice also that the default rate appears to be roughly the
midpoint of the edges of predicted probability for each bin. This implies that
the default rate is similar to the average model prediction in each bin. In
other words, not only does our model appear to effectively rank borrowers
from low to high risk of default, as quantified by the ROC AUC, but it also
appears to accurately predict the probability of default.

Measuring how closely predicted probabilities match actual probabilities is
the goal of calibrating probabilities. A standard measure for probability
calibration follows from the concepts discussed above and is called expected
calibration error (ECE), defined as

Figure 7.9: Expected Calibration Error

where the index i ranges from 1 to the number of bins (N), F  is the fraction
of all samples falling in bin i, o  is the fraction of samples in bin i that are
positive (that is, for the case study, defaulters), and e  is the average of
predicted probabilities within bin i.

We can calculate the ECE for the predicted probabilities within decile bins
of the test set using a DataFrame very similar to that shown in Figure 7.4,
needed to create the decile chart. The only addition we need is the mean
predicted probability in each bin. Create such a DataFrame as follows:

cal_df = test_set_gr.agg({'Outcome':['count',
'mean'],\

i
i

i



                          'Predicted
probability':'mean'})

cal_df

The output DataFrame should look like this:

Figure 7.10: DataFrame for calculating the ECE metric

For convenience, let's define a variable for F, which is the fraction of
samples in each bin. This is the counts in each bin from the above
DataFrame divided by the total number of samples, taken from the shape of
the response variable for the test set:

F = cal_df[('Outcome',
'count')].values/y_test_all.shape[0]

F

The output should be this:



array([0.10003368, 0.10003368, 0.10003368,
0.09986527, 0.10003368,

       0.10003368, 0.09986527, 0.10003368,
0.10003368, 0.10003368])

So, each bin has about 10% of the samples. This is expected, of course, since
the bins were created using a quantile approach. However, for other
binnings, the sample sizes in the bins may not be equal. Now let's implement
the formula for ECE in code to calculate this metric:

ECE = np.sum(

    F

    * np.abs(

             cal_df[('Outcome', 'mean')]

             - cal_df[('Predicted probability',
'mean')]))

ECE

The output should be this:

0.008144502190176022

This number represents the ECE for our final model, on the test set. By
itself, the number isn't all that meaningful. However, metrics like this can be
monitored over time, after the model has been put in production and is being
used in the real world. If the ECE starts to increase, this is a sign that the
model is becoming less calibrated and may need to be retrained, for
example, or have a calibration procedure applied to the outputs.

A more intuitive way to examine the calibration of our predicted
probabilities for the test set is to plot the ingredients needed for ECE, in
particular the true default rate of the response variable, against the average
of model predictions in each bin. To this we add a 1-1 line, which represents
perfect calibration, as a point of reference:



ax = plt.axes()

ax.plot([0, 0.8], [0, 0.8], 'k--', linewidth=1,

        label='Perfect calibration')

ax.plot(cal_df[('Outcome', 'mean')],\

        cal_df[('Predicted probability',
'mean')],\

        marker='x',\

        label='Model calibration on test set')

ax.set_xlabel('True default rate in bin')

ax.set_ylabel('Average model prediction in bin')

ax.legend()

The resulting plot should look like this:



Figure 7.11: Calibration plot for predicted probabilities

Figure 7.11 shows that model-predicted probabilities are very close to the
true default rates, so the model appears to be well calibrated. For additional
insight, you can try adding error bars to this plot yourself as an exercise.
Also note that scikit-learn makes a function available to calculate the
information needed to create Figure 7.11:
sklearn.calibration.calibration_curve. However, this
function does not return the sample size in each bin.

One additional point to be aware of for probability calibration is that some
methods for dealing with class imbalance, such as oversampling or
undersampling, change the class fraction in the training dataset, which will
affect the predicted probabilities and likely make them less accurate. This
may not be that important though, compared to the ability of the model to
rank borrowers on their risk of default, as measured by the ROC AUC,
depending on the needs of the client.
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Financial Analysis

The model performance metrics we have calculated so far were based on
abstract measures that could be applied to analyze any classification model:
how accurate a model is, how skillful a model is at identifying true
positives relative to false positives at different thresholds (ROC AUC), the
correctness of positive predictions (precision), or intuitive measures such as
sloping risk. These metrics are important for understanding the basic
workings of a model and are widely used within the machine learning
community, so it's important to understand them. However, for the
application of a model to business use cases, we can't always directly use
such performance metrics to create a strategy for how to use the model to
guide business decisions or figure out how much value a model is expected
to create. To go the extra mile and connect the mathematical world of
predicted probabilities and thresholds to the business world of costs and
benefits, a financial analysis of some kind is usually needed.

In order to help the client with this analysis, the data scientist needs to
understand what kinds of decisions and actions might be taken, based on
predictions made by the model. This should be the topic of a conversation
with the client, preferably early on in the project life cycle. We have left it
until the end of the book so that we could establish a baseline understanding
of what predictive modeling is and how it works. However, learning the
business context around model usage at the beginning of a project allows
you to set goals for model performance in terms of the creation of value,
which you can track throughout a project as we tracked the ROC AUC of
the different models we built. Translating model performance metrics into
financial terms is the topic of this section.

For a binary classification model such as that of the case study, here are a
few questions that the data scientist needs to know the answers to, in order
to help the client figure out how to use the model:

What kinds of decisions does the client want to use the model to help
them make?



How can the predicted probabilities of a binary classification model be
used to help make these decisions?

Are they yes/no decisions? If so, then choosing a single threshold of
predicted probability will be sufficient.

Are there more than two levels of activity that will be decided on,
based on model results? If so, then choosing two or more thresholds, to
sort predictions into low, medium, and high risk, for example, may be
the solution. For instance, predicted probabilities below 0.5 may be
considered low risk, those between 0.5 and 0.75 medium risk, and
those above 0.75 high risk.

What are the costs of taking all the different courses of action that are
available, based on model guidance?

What are the potential benefits to be gained from successful actions
taken as a result of model guidance?
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Financial Conversation with the Client

We ask the case study client about the points outlined above and learn the
following: for credit accounts that are at a high risk of default, the client is
designing a new program to provide individualized counseling for the
account holder, to encourage them to pay their bill on time or provide
alternative payment options if that will not be possible. Credit counseling is
performed by trained customer service representatives who work in a call
center. The cost per counseling session is NT$7,500 and the expected
success rate of a session is 70%, meaning that on average 70% of the
recipients of phone calls offering counseling will pay their bill on time, or
make alternative arrangements that are acceptable to the creditor. The
potential benefits of successful counseling are that the amount of an
account's monthly bill will be realized as savings, if it was going to default
but instead didn't, as a result of the counseling. Currently, the monthly bills
for accounts that default are reported as losses.

After having the preceding conversation with the client, we have the
materials we need to make a financial analysis. The client would like us to
help them decide which members to contact and offer credit counseling to.
If we can help them narrow down the list of people who will be contacted
for counseling, we can help save them money by avoiding unnecessary and
expensive contacts. The clients' limited resources for counseling will be
more appropriately spent on accounts that are at higher risk of default. This
should create greater savings due to prevented defaults. Additionally, the
client lets us know that our analysis can help them request a budget for the
counseling program, if we can give them an idea of how many counseling
sessions it would be worthwhile to offer.

As we proceed to the financial analysis, we see that the decision that the
model will help the client make, on an account by account basis, is a yes/no
decision: whether to offer counseling to the holder of a given account.
Therefore, our analysis should focus on finding an appropriate threshold of
predicted probability, by which we may divide our accounts into two



groups: higher-risk accounts that will receive counseling and lower-risk
ones that won't.
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Exercise 7.02: Characterizing Costs and Savings

The connection between model output and business decisions the client will make
comes down to selecting a threshold for the predicted probabilities. Therefore, in
this exercise, we will characterize the expected costs of the counseling program,
in terms of costs of offering individual counseling sessions, as well as the
expected savings, in terms of prevented defaults, at a range of thresholds. There
will be different costs and savings at each threshold, because each threshold is
expected to result in a different number of positive predictions, as well as a
different number of true positives within these. The first step is to create an array
of potential thresholds. We will use 0 through 1, going by an increment of 0.01.
Perform the following steps to complete the exercise:

Note

The Jupyter notebook for this exercise can be found here:
https://packt.link/yiMEr. Additional steps to prepare data for this exercise, based
on previous results in this chapter, have been added to the notebook. Please make
sure you execute the prerequisite steps as presented in the notebook before you
perform this exercise.

1. Create a range of thresholds to calculate expected costs and benefits of
counseling with this code:

thresholds = np.linspace(0, 1, 101)

This creates 101 linearly spaced points between 0 and 1, inclusive.

Now, we need to know the potential savings of a prevented default. To
calculate this precisely, we would need to know the next month's monthly
bill. However, the client has informed us that this will not be available at the
time they need to create the list of account holders to be contacted.
Therefore, in order to estimate the potential savings, we will use the most
recent monthly bill.

We will use the testing data to create this analysis, as this provides a
simulation of how the model will be used after we deliver it to the client: on
new accounts that weren't used for model training.

https://packt.link/yiMEr


2. Confirm the index of the testing data features array that corresponds to the
most recent month's bill:

features_response[5]

The output should be this:

'BILL_AMT1'

The index 5 is for the most recent months' bill, which we'll use later.

3. Store the cost of counseling in a variable to use for analysis:

cost_per_counseling = 7500

We also know from the client that the counseling program isn't 100%
effective. We should take this into account in our analysis.

4. Store the effectiveness rate the client gave us for use in analysis:

effectiveness = 0.70

Now, we will calculate costs and savings for each of the thresholds. We'll
step through each calculation and explain it, but for now, we need to create
empty arrays to hold the results for each threshold.

5. Create empty arrays to store analysis results. We'll explain what each one
will hold in the following steps:

n_pos_pred = np.empty_like(thresholds)

total_cost = np.empty_like(thresholds)

n_true_pos = np.empty_like(thresholds)

total_savings = np.empty_like(thresholds)

These create empty arrays with the same number of elements as there are
thresholds in our analysis. We will loop through each threshold value to fill
these arrays.

6. Make a counter variable and open a for loop to go through thresholds:

counter = 0



for threshold in thresholds:

For each threshold, there will a different number of positive predictions,
according to how many predicted probabilities are above that threshold.
These correspond to accounts that are predicted to default. Each account that
is predicted to default will receive a counseling phone call, which has a cost
associated with it. So, this is the first part of the cost calculation.

7. Determine which accounts get positive predictions at this threshold:

    pos_pred = test_set_pred_proba > threshold

pos_pred is a Boolean array. The sum of pos_pred indicates the
number of predicted defaults at this threshold.

8. Calculate the number of positive predictions for the given threshold:

    n_pos_pred[counter] = sum(pos_pred)

9. Calculate the total cost of counseling for the given threshold:

    total_cost[counter] \

        = n_pos_pred[counter] *
cost_per_counseling

Now that we have characterized the possible costs of the counseling
program, at each threshold, we need to see what the projected savings are.
Savings are obtained when counseling is offered to the right account holders:
those who would otherwise default. In terms of the classification problem,
these are positive predictions, where the true value of the response variable
is also positive – in other words, true positives.

10. Determine which accounts are true positives, based on the array of positive
predictions and the response variable:

    true_pos = pos_pred & y_test_all.astype(bool)

11. Calculate the number of true positives as the sum of the true positive array:

    n_true_pos[counter] = sum(true_pos)



The savings we can get from successfully counseling account holders who
would otherwise default depends on the savings per prevented default, as
well as the effectiveness rate of counseling. We won't be able to prevent
every default.

12. Calculate the anticipated savings at each threshold using the number of true
positives, the savings due to prevented default (estimated using last month's
bill), and the effectiveness rate of counseling:

    total_savings[counter] = np.sum(

        true_pos.astype(int)

        * X_test_all[:,5]

        * effectiveness

        )

13. Increment the counter:

counter += 1

Steps 5 through 13 should be run as a for loop in one cell in the Jupyter
Notebook. Afterward, the net savings for each threshold can be calculated as
the savings minus the cost.

14. Calculate the net savings for all the thresholds by subtracting the savings and
cost arrays:

net_savings = total_savings - total_cost

Now, we're in a position to visualize how much money we might help our
client save by providing counseling to the appropriate account holders. Let's
visualize this.

15. Plot the net savings against the thresholds as follows:

mpl.rcParams['figure.dpi'] = 400

plt.plot(thresholds, net_savings)

plt.xlabel('Threshold')

plt.ylabel('Net savings (NT$)')



plt.xticks(np.linspace(0,1,11))

plt.grid(True)

The resulting plot should look like this:

Figure 7.12: Plot of net savings versus thresholds

The plot indicates that the choice of threshold is important. While it will be
possible to create net savings at many different values of the threshold, it
looks like the highest net savings will be generated by setting the threshold
somewhere in the range of about 0.25 to 0.5.

Let's confirm the optimal threshold for creating the greatest savings and see
how much the savings are.

16. Find the index of the largest element of the net savings array using
NumPy's argmax:

max_savings_ix = np.argmax(net_savings)

17. Display the threshold that results in the greatest net savings:



thresholds[max_savings_ix]

The output should be as follows:

0.36

18. Display the greatest possible net savings:

net_savings[max_savings_ix]

The output should be as follows:

13415710.0

We see that the greatest net savings occurs at a threshold of 0.36. The amount of
net savings realized at this threshold is over NT$13 million, for this testing
dataset of accounts. These savings would need to be scaled by the number of
accounts served by the client, to estimate the total possible savings, assuming the
data we are working with is representative of all these accounts.

Note, however, that the savings are about the same up to a threshold of about 0.5,
as seen in Figure 7.12.

As the threshold increases, we are "raising the bar" for how risky a client must be,
in order for us to contact them and offer counseling. Increasing the threshold from
0.36 to 0.5 means we would be only contacting riskier clients whose probability
is > 0.5. This means contacting fewer clients, reducing the upfront cost of the
program. Figure 7.12 indicates that we may be still able to create roughly the
same amount of net savings, by contacting fewer people. While the net effect is
the same, the initial expenditure on counseling will be smaller. This may be
desirable to the client. We explore this concept further in the following activity.
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Activity 7.01: Deriving Financial Insights

The raw materials of the financial analysis are completed. However, in this
activity, your aim is to generate some additional insights from these results,
to provide the client with more context around how the predictive model we
built can generate value for them. In particular, we have looked at results for
the testing set we reserved from model building. The client may have more
accounts than those they supplied to us, that are representative of their
business. You should report to them results that could be easily scaled to
however big their business is, in terms of the number of accounts.

We can also help them understand how much this program will cost; while
the net savings are an important number to consider, the client will have to
fund the counseling program before any of these savings will be realized.
Finally, we will link the financial analysis back to standard machine learning
model performance metrics.

Once you complete the activity, you should be able to communicate the
initial cost of the counseling program to the client, as well as obtain plots of
precision and recall such as this:



Figure 7.13: Expected precision-recall curve

This curve will be useful in interpreting the value created by the model at
different thresholds.

Perform the following steps to complete the activity:

Note

The Jupyter notebook containing the code for this activity can be found here:
https://packt.link/2kTVB. Additional steps to prepare data for this activity,
based on previous results in this chapter, have been added to the notebook.
Please execute the perquisite steps as presented in the notebook before you
attempt this activity.

1. Using the testing set, calculate the cost of all defaults if there were no
counseling program.

https://packt.link/2kTVB


2. Calculate by what percent the cost of defaults can be decreased by the
counseling program.

3. Calculate the net savings per account at the optimal threshold,
considering all accounts it might be possible to counsel, in other words
relative to the whole test set.

4. Plot the net savings per account against the cost of counseling per
account for each threshold.

5. Plot the fraction of accounts predicted as positive (this is called the
"flag rate") at each threshold.

6. Plot a precision-recall curve for the testing data.

7. Plot precision and recall separately on the y-axis against threshold on
the x-axis.

Note

The solution to this activity can be found via this link.
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Final Thoughts on Delivering a Predictive Model to the
Client

We have now completed the modeling activities and also created a financial
analysis to indicate to the client how they can use the model. While we have
completed the essential intellectual contributions that are the data scientist's
responsibility, it is necessary to agree with the client on the form in which
all these contributions will be delivered.

A key contribution is the predictive capability embodied in the trained
model. Assuming the client can work with the trained model object we
created with XGBoost, this model could be saved to disk as we've done and
sent to the client. Then, the client would be able to use it within their
workflow. This pathway to model delivery may require the data scientist to
work with engineers in the client's organization, to deploy the model within
the client's infrastructure.

Alternatively, it may be necessary to express the model as a mathematical
equation (for example, using logistic regression coefficients) or a set of if-
then statements (as in decision trees or random forest) that the client could
use to implement the predictive capability in SQL. While expressing
random forests in SQL code is cumbersome due to the possibility of having
many trees with many levels, there are software packages that will create
this representation for you from a trained scikit-learn model (for example,
https://pypi.org/project/SKompiler/).

Note: Cloud Platforms for Model Development and
Deployment

In this book, we used scikit-learn and the XGBoost package to build
predictive models locally on our computers. Recently, cloud platforms such
as Amazon Web Services (AWS) have made machine learning capabilities
available through offerings such as Amazon SageMaker. SageMaker

https://pypi.org/project/SKompiler/


includes a version of XGBoost, which you can use to train models with
similar syntax to what we've done here. Subtle differences may exist in the
implementation of model training between the methods shown in this book
and the Amazon distribution of SageMaker, and you are encouraged to
check your work every step of the way to make sure your results are as
intended. For example, fitting an XGBoost model using early stopping may
require additional steps in SageMaker to ensure the trained model uses the
best iteration for predictions, as opposed to the last iteration when
training stopped.

Cloud platforms such as AWS are attractive because they may greatly
simplify the process of integrating a trained machine learning model into a
client's technical stack, which in many cases may already be built on a
cloud platform.

Before using the model to make predictions, the client would need to ensure
that the data was prepared in the same way it was for the model building we
have done. For example, the removal of samples with values of 0 for all the
features and the cleaning of the EDUCATION and MARRIAGE features
would have to be done in the same way we demonstrated earlier in this
chapter. Alternatively, there are other possible ways to deliver model
predictions, such as an arrangement where the client delivers features to the
data scientist and receives the predictions back.

Another important consideration for the discussion of deliverables is: what
format should the predictions be delivered in? A typical delivery format for
predictions from a binary classification model, such as that we've created
for the case study, is to rank accounts by their predicted probability of
default. The predicted probability should be supplied along with the account
ID and whatever other columns the client would like. This way, when the
call center is working their way through the list of account holders to offer
counseling to, they can contact those at highest risk for default first and
proceed to lower-priority account holders as time and resources allow. The
client should be informed of which threshold to use for predicted
probabilities, to result in the highest net savings. This threshold would



represent the stopping point on the list of account holders to contact if it is
ranked on the predicted probability of default.
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Model Monitoring

Depending on how long the client has engaged the data scientist for, it is
always beneficial to monitor the performance of the model over time, as it
is being used. Does predictive capability remain the same or degrade over
time? When assessing this for the case study, it would be important to keep
in mind that if account holders are receiving counseling, their probability of
default would be expected to be lower than the predicted probability
indicates, due to the intended effects of the new counseling program. For
this reason, and to test the effectiveness of the counseling program, it is
good practice to reserve a randomly chosen portion of account holders who
will not receive any counseling, regardless of credit default risk. This group
would be known as the control group and should be small compared to the
rest of the population who receives counseling, but large enough to draw
statistically significant inferences from.

While it's beyond the scope of this book to go into details about how to
design and use a control group, suffice to say here that model predictive
capability could be assessed on the control group since they have received
no counseling, similar to the population of accounts the model was trained
on. Another benefit of a control group is that the rate of default, and
financial loss due to defaults, can be compared to those accounts that
received the model-guided counseling program. If the program is working
as intended, the accounts receiving counseling should have a lower rate of
default and a smaller financial loss due to default. The control group can
provide evidence that the program is, in fact, working.

Note: Advanced Modeling Technique for Selective
Treatments—Uplift Modeling

When a business is considering selectively offering a costly treatment to its
customers, such as the counseling program of the case study, a technique
known as uplift modeling should be considered. Uplift modeling seeks to



determine, on an individual basis, how effective treatments are. We made a
blanket assumption that phone counseling treatment is 70% effective across
customers on average. However, it may be that the effectiveness varies by
customer; some customers are more receptive and others less so. For more
information on uplift modeling, see https://www.steveklosterman.com/uplift-
modeling/.

A relatively simple way to monitor a model implementation is to see if the
distribution of model predictions is changing over time, as compared to the
population used for model training. We plotted the histogram of predicted
probabilities for the test set in Figure 7.2. If the shape of the histogram of
predicted probabilities changes substantially, it may be a sign that the
features have changed, or that the relationship between the features and
response has changed and the model may need to be re-trained or rebuilt. To
quantify changes in distributions, the interested reader is encouraged to
consult a statistics resource to learn about the chi-squared goodness-of-fit
test or the Kolmogorov-Smirnov test. Changing distributions of model
predictions may also become evident if the proportion of accounts predicted
to default, according to a chosen threshold, changes in a noticeable way.

All the other model assessment metrics presented in this chapter and
throughout the book can also be good ways to monitor model performance
in production: decile and equal-interval charts, calibration, ROC AUC, and
others.
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Ethics in Predictive Modeling

The question of whether a model makes fair predictions has received
increased attention as machine learning has expanded in scope to touch
most modern businesses. Fairness may be assessed on the basis of whether
a model is equally skillful at making predictions for members of different
protected classes, for example, different gender groups.

In this book, we took the approach of removing gender from being
considered as a feature for the model. However, it may be that other
features can effectively serve as a proxy for gender, so that a model may
wind up producing biased results for different gender groups, even though
gender was not used as a feature. One simple way to screen for the
possibility of such bias is to check if any of the features used in the model
have a particularly high association with a protected class, for example, by
using a t-test. If so, it may be better to remove these features from the
model.

How to determine whether a model is fair, and if not, what to do about it, is
the subject of active research. You are encouraged to become familiar with
efforts such as AI Fairness 360 (https://aif360.mybluemix.net/) that are
making tools available to improve fairness in machine learning. Before
embarking on work related to fairness, it's important to understand from the
client what the definition of fairness is, as this may vary by geographic
region due to different laws in different countries, as well as the specific
policies of the client's organization.
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Summary

In this chapter, you learned several analysis techniques to provide insight
into model performance, such as decile and equal-interval charts of default
rate by model prediction bin, as well as how to investigate the quality of
model calibration. It's good to derive these insights, as well as calculate
metrics such as the ROC AUC, using the model test set, since this is
intended to represent how the model might perform in the real world on
new data.

We also saw how to go about conducting a financial analysis of model
performance. While we left this to the end of the book, an understanding of
the costs and savings going along with the decisions to be guided by the
model should be understood from the beginning of a typical project. These
allow the data scientist to work toward a tangible goal in terms of increased
profit or savings. A key step in this process, for binary classification
models, is to choose a threshold of predicted probability at which to declare
a positive prediction, so that the profits or savings due to model-guided
decision making are maximized.

Finally, we considered tasks related to delivering and monitoring the model,
including the idea of establishing a control group to monitor model
performance and test the effectiveness of any programs guided by model
output. The structure of control groups and model monitoring strategies will
be different from project to project, so you will need to determine the
appropriate course of action in each new case. To further your knowledge of
using models in the real world, you are encouraged to continue studying
topics such as experimental design, cloud platforms such as AWS that can
be used to train and deploy models, and issues with fairness in
predictive modeling.

You have now completed the project and are ready to deliver your findings
to the client. Along with trained models saved to disk, or other data
products or services you may provide to the client, you will probably also
want to create a presentation, typically a slide show, detailing your



progress. Contents of such presentations usually include a problem
statement, results of data exploration and cleaning, a comparison of the
performance of different models you built, model explanations such as
SHAP values, and the financial analysis which shows how valuable your
work is. As you craft presentations of your work, it's usually better to tell
your story with pictures as opposed to a lot of text. We've demonstrated
many visualization techniques throughout the book that you can use to do
this, and you should continue to explore ways to depict data and modeling
results.

Always be sure to ask the client which specific things they may want to
have in a presentation and be sure to answer all their questions. When a
client sees that you can create value for them in an understandable way, you
have succeeded.
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1. Data Exploration and Cleaning

Activity 1.01: Exploring the Remaining Financial Features in the
Dataset

Solution:

Before beginning, set up your environment and load in the cleaned dataset
as follows:

import pandas as pd

import matplotlib.pyplot as plt #import plotting
package

#render plotting automatically

%matplotlib inline

import matplotlib as mpl #additional plotting
functionality

mpl.rcParams['figure.dpi'] = 400 #high resolution
figures

mpl.rcParams['font.size'] = 4 #font size for figures

from scipy import stats

import numpy as np

df =
pd.read_csv('../../Data/Chapter_1_cleaned_data.csv')
1. Create lists of feature names for the remaining financial features.

These fall into two groups, so we will make lists of feature names as before,
to facilitate analyzing them together. You can do this with the following
code:

bill_feats = ['BILL_AMT1', 'BILL_AMT2',
'BILL_AMT3', \



              'BILL_AMT4', 'BILL_AMT5',
'BILL_AMT6']

pay_amt_feats = ['PAY_AMT1', 'PAY_AMT2',
'PAY_AMT3', \

                 'PAY_AMT4', 'PAY_AMT5',
'PAY_AMT6']

2. Use .describe() to examine statistical summaries of the bill amount
features. Reflect on what you see. Does it make sense?

Use the following code to view the summary:

df[bill_feats].describe()

The output should appear as follows:

Figure 1.47: Statistical description of bill amounts for the past 6 months

We see that the average monthly bill is roughly 40,000 to 50,000 NT dollars.
You are encouraged to examine the conversion rate to your local currency.
For example, 1 US dollar ~= 30 NT dollars. Do the conversion and ask
yourself, is this a reasonable monthly payment? We should also confirm this
with the client, but it seems reasonable.

We also notice there are some negative bill amounts. This seems reasonable
because of the possible overpayment of the previous month's bill, perhaps in



anticipation of a purchase that would show up on the current month's bill. A
scenario like this would leave that account with a negative balance, in the
sense of a credit to the account holder.

3. Visualize the bill amount features using a 2 by 3 grid of histogram plots
using the following code:

df[bill_feats].hist(bins=20, layout=(2,3))

The graph should look like this:

Figure 1.48: Histograms of bill amounts

The histogram plots in Figure 1.48 make sense in several respects. Most
accounts have relatively small bills. There is a steady decrease in the number
of accounts as the amount of the bill increases. It also appears that the
distribution of billed amounts is roughly similar month to month, so we don't
notice any data inconsistency issues as we did with the payment status
features. This feature appears to pass our data quality inspection. Now, we'll
move on to the final set of features.



4. Use the .describe() method to obtain a summary of the payment
amount features using the following code:

df[pay_amt_feats].describe()

The output should appear thus:

Figure 1.49: Statistical description of bill payment amounts for the past
6 months

The average payment amounts are about an order of magnitude (power of
10) lower than the average bill amounts we summarized earlier in the
activity. This means that the "average case" is an account that is not paying
off its entire balance from month to month. This makes sense in light of our
exploration of the PAY_1 feature, for which the most prevalent value was 0
(the account made at least the minimum payment but did not pay off the
whole balance). There are no negative payments, which also seems right.

5. Plot a histogram of the bill payment features similar to the bill amount
features, but also apply some rotation to the x-axis labels with the xrot
keyword argument so that they don't overlap. Use the xrot=<angle>
keyword argument to rotate the x-axis labels by a given angle in degrees
using the following code:

df[pay_amt_feats].hist(layout=(2,3), xrot=30)



In our case, we found that 30 degrees of rotation worked well. The plot
should look like this:

``````

Figure 1.50: Histograms of raw payment amount data

A quick glance at this figure indicates that this is not a very informative
graphic; there is only one bin in most of the histograms that is of a
noticeable height. This is not an effective way to visualize this data. It
appears that the monthly payment amounts are mainly in a bin that includes
0. How many are in fact 0?

6. Use a Boolean mask to see how much of the payment amount data is exactly
equal to 0 using the following code: Do this with the following code:

pay_zero_mask = df[pay_amt_feats] == 0

pay_zero_mask.sum()

The output should look like this:



Figure 1.51: Counts of bill payments equal to 0

Does this data make sense given the histogram in the previous step?

The first line here creates a new DataFrame called pay_zero_mask,
which is a DataFrame of True and False values according to whether the
payment amount is equal to 0. The second line takes the column sums of this
DataFrame, interpreting True as 1 and False as 0, so the column sums
indicate how many accounts have a value of 0 for each feature.

We see that a substantial portion, roughly around 20-25% of accounts, have
a bill payment equal to 0 in any given month. However, most bill payments
are above 0. So, why can't we see them in the histogram? This is due to the
range of values for bill payments relative to the values of the majority of the
bill payments.

In the statistical summary, we can see that the maximum bill payment in a
month is typically 2 orders of magnitude (100 times) larger than the average
bill payment. It seems likely there are only a small number of these very
large bill payments. But, because of the way the histogram is created, using
equal-sized bins, nearly all the data is lumped into the smallest bin, and the
larger bins are nearly invisible because they have so few accounts. We need
a strategy to effectively visualize this data.

7. Ignoring the payments of 0 using the mask you created in the previous step,
use pandas' .apply() and NumPy's np.log10() method to plot
histograms of logarithmic transformations of the non-zero payments. You
can use .apply() to apply any function, including log10, to all the
elements of a DataFrame. Use the following code for this:

df[pay_amt_feats]
[~pay_zero_mask].apply(np.log10)\



                                 .hist(layout=
(2,3))

This is a relatively advanced use of pandas, so don't worry if you couldn't
figure it out by yourself. However, it's good to start to get an impression of
how you can do a lot in pandas with relatively little code.

The output should be as follows:

Figure 1.52: Base-10 logs of non-zero bill payment amounts

While we could have tried to create variable-width bins for better visualization of
the payment amounts, a more convenient approach that is often used to visualize,
and sometimes even model, data that has a few values on a much different scale
than most of the values is a logarithmic transformation, or log transform. We
used a base-10 log transform. Roughly speaking, this transform tells us the
number of zeros in a value. In other words, a balance of at least 1 million dollars,
but less than 10 million, would have a log transform of at least 6 but less than 7,
because 106 = 1,000,000 (and conversely log10(1,000,000) = 6) while 107 =
10,000,000.



To apply this transformation to our data, first, we needed to mask out the zero
payments, because log10(0) is undefined (another common approach in this
case is to add a very small number to all values, such as 0.01, so there are no
zeros). We did this with the Python logical not operator ~ and the zero mask we
created already. Then we used the pandas .apply() method, which applies any
function we like to the data we have selected. In this case, we wished to apply a
base-10 logarithm, calculated by np.log10. Finally, we made histograms of
these values.

The result is a more effective data visualization: the values are spread in a more
informative way across the histogram bins. We can see that the most commonly
occurring bill payments are in the range of thousands (log10(1,000) = 3),
which matches what we observed for the mean bill payment in the statistical
summary. There are some pretty small bill payments, and also a few pretty large
ones. Overall, the distribution of bill payments appears pretty consistent from
month to month, so we don't see any potential issues with this data.
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2. Introduction to Scikit-Learn and Model Evaluation

Activity 2.01: Performing Logistic Regression with a New
Feature and Creating a Precision-Recall Curve

Solution:

1. Use scikit-learn's train_test_split to make a new set of training and
test data. This time, instead of EDUCATION, use LIMIT_BAL, the account's
credit limit, as the feature.

Execute the following code to do this:

X_train_2, X_test_2, y_train_2, y_test_2 =
train_test_split\

                                          (df['LI
MIT_BAL']\

                                           .value
s\

                                           .resha
pe(-1,1),\

                                           df['de
fault'\

                                              'pa
yment next'\

                                              'mo
nth'].values,\

                                           test_s
ize=0.2,\

                                           random
_state=24))

Notice here we create new training and test splits, with new variable names.



2. Train a logistic regression model using the training data from your split.

The following code does this:

example_lr.fit(X_train_2, y_train_2)

You can reuse the same model object you used earlier, example_lr, if
you're running the whole chapter in a single notebook. You can re-train this
object to learn the relationship between this new feature and the response.
You could even try a different train/test split, if you wanted to, without
creating a new model object. The existing model object has been updated in-
place in these scenarios.

3. Create the array of predicted probabilities for the test data.

Here is the code for this step:

y_test_2_pred_proba =
example_lr.predict_proba(X_test_2)

4. Calculate the ROC AUC using the predicted probabilities and the true labels
of the test data. Compare this to the ROC AUC from using the EDUCATION
feature.

Run this code for this step:

metrics.roc_auc_score(y_test_2,
y_test_2_pred_proba[:,1])

The output is as follows:

0.6201990844642832

Notice that we index the predicted probabilities array in order to get the
predicted probability of the positive class from the second column. How
does this compare to the ROC AUC from the EDUCATION logistic
regression? The AUC is higher. This may be because now we are using a
feature that has something to do with an account's financial status (credit
limit), to predict something else related to the account's financial status



(whether or not it will default), instead of using something less directly
related to finances.

5. Plot the ROC curve.

Here is the code to do this; it's similar to the code we used in the
previous exercise:

fpr_2, tpr_2, thresholds_2 = metrics.roc_curve\

                             (y_test_2, \

                              y_test_2_pred_proba
[:,1])

plt.plot(fpr_2, tpr_2, '*-')

plt.plot([0, 1], [0, 1], 'r--')

plt.legend(['Logistic regression', 'Random
chance'])

plt.xlabel('FPR')

plt.ylabel('TPR')

plt.title('ROC curve for logistic regression with
'\

          'LIMIT_BAL feature')

The plot should appear as follows:



Figure 2.30: ROC curve for the LIMIT_BAL logistic regression

This looks a little closer to an ROC curve that we'd like to see: it's a bit
further from the random chance line than the model using only
EDUCATION. Also notice that the variation in pairs of true and false positive
rates is a little smoother over the range of thresholds, reflective of the larger
number of distinct values of the LIMIT_BAL feature.

6. Calculate the data for the precision-recall curve on the test data using scikit-
learn's functionality.

Precision is often considered in tandem with recall. We can use
precision_recall_curve in sklearn.metrics to automatically
vary the threshold and calculate pairs of precision and recall values at each
threshold value. Here is the code to retrieve these values, which is similar to
roc_curve:

precision, recall, thresh_3 =
metrics.precision_recall_curve\

                              (y_test_2,\

                               y_test_2_pred_prob
a[:,1])



7. Plot the precision-recall curve using matplotlib: we can do this with the
following code.

Note that we put recall on the x-axis and precision on the y-axis, and we set
the axes' limits to the range [0, 1]:

plt.plot(recall, precision, '-x')

plt.xlabel('Recall')

plt.ylabel('Precision')

plt.title('Precision and recall for the
logistic'\

          'regression 'with LIMIT_BAL')

plt.xlim([0, 1])

plt.ylim([0, 1])

Figure 2.31: Plot of the precision-recall curve

8. Use scikit-learn to calculate the area under the precision-recall curve.

Here is the code for this:

metrics.auc(recall, precision)



You will obtain the following output:

0.31566964427378624

We saw that the precision-recall curve shows that precision is generally
fairly low for this model; for nearly all of the range of thresholds, the
precision, or portion of positive classifications that are correct, is less than
half. We can calculate the area under the precision-recall curve as a way to
compare this classifier with other models or feature sets we may consider.

Scikit-learn offers functionality for calculating an AUC for any set of x-y
data, using the trapezoid rule, which you may recall from calculus:
metrics.auc. We used this functionality to get the area under the
precision-recall curve.

9. Now recalculate the ROC AUC, except this time do it for the training data.
How is this different, conceptually and quantitatively, from your earlier
calculation?

First, we need to calculate predicted probabilities using the training data, as
opposed to the test data. Then we can calculate the ROC AUC using the
training data labels. Here is the code:

y_train_2_pred_proba =
example_lr.predict_proba(X_train_2)

metrics.roc_auc_score(y_train_2,
y_train_2_pred_proba[:,1])

You should obtain the following output:

0.6182918113358344

Quantitatively, we can see that this AUC is not all that different from the test data
ROC AUC we calculated earlier. Both are about 0.62. Conceptually, what is the
difference? When we calculate this metric on the training data, we are measuring
the model's skill in predicting the same data that "taught" the model how to make
predictions. We are seeing how well the model fits the data. On the other hand,
test data metrics indicate performance on out-of-sample data the model hasn't
"seen" before. If there was much of a difference in these scores, which usually



would come in the form of a higher training score than the test score, it would
indicate that while the model fits the data well, the trained model does not
generalize well to new, unseen data.

In this case, the training and test scores are similar, meaning the model does about
as well on out-of-sample data as it does on the same data used in model training.
We will learn more about the insights we can gain by comparing training and test
scores in Chapter 4, The Bias-Variance Trade-Off.
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3. Details of Logistic Regression and Feature Exploration

Activity 3.01: Fitting a Logistic Regression Model and Directly
Using the Coefficients

Solution:

The first few steps are similar to things we've done in previous activities:

1. Create a train/test split (80/20) with PAY_1 and LIMIT_BAL as features:

from sklearn.model_selection import
train_test_split

X_train, X_test, y_train, y_test =
train_test_split(

    df[['PAY_1', 'LIMIT_BAL']].values,

    df['default payment next month'].values,

    test_size=0.2, random_state=24)

2. Import LogisticRegression, with the default options, but set the
solver to 'liblinear':

from sklearn.linear_model import
LogisticRegression

lr_model = LogisticRegression(solver='liblinear')

3. Train on the training data and obtain predicted classes, as well as class
probabilities, using the test data:

lr_model.fit(X_train, y_train)

y_pred = lr_model.predict(X_test)

y_pred_proba = lr_model.predict_proba(X_test)

4. Pull out the coefficients and intercept from the trained model and manually
calculate predicted probabilities. You'll need to add a column of ones to your



features, to multiply by the intercept.

First, let's create the array of features, with a column of ones added, using
horizontal stacking:

ones_and_features = np.hstack\

                    ([np.ones((X_test.shape[0],1)
), X_test])

Now we need the intercept and coefficients, which we reshape and
concatenate from scikit-learn output:

intercept_and_coefs = np.concatenate\

                      ([lr_model.intercept_.resha
pe(1,1), \

                        lr_model.coef_], axis=1)

To repeatedly multiply the intercept and coefficients by all the rows of
ones_and_features, and take the sum of each row (that is, find the
linear combination), you could write this all out using multiplication and
addition. However, it's much faster to use the dot product:

X_lin_comb = np.dot(intercept_and_coefs,\

                    np.transpose(ones_and_feature
s))

Now X_lin_comb has the argument we need to pass to the sigmoid
function we defined, in order to calculate predicted probabilities:

y_pred_proba_manual = sigmoid(X_lin_comb)

5. Using a threshold of 0.5, manually calculate predicted classes. Compare
this to the class predictions outputted by scikit-learn.

The manually predicted probabilities, y_pred_proba_manual, should
be the same as y_pred_proba; we'll check that momentarily. First,
manually predict the classes with the threshold:



y_pred_manual = y_pred_proba_manual >= 0.5

This array will have a different shape than y_pred, but it should contain
the same values. We can check whether all the elements of two arrays are
equal like this:

np.array_equal(y_pred.reshape(1,-1),
y_pred_manual)

This should return a logical True if the arrays are equal.

6. Calculate ROC AUC using both scikit-learn's predicted probabilities and
your manually predicted probabilities, and compare them.

First, import the following:

from sklearn.metrics import roc_auc_score

Then, calculate this metric on both versions, taking care to access the correct
column, or reshape as necessary:

Figure 3.37: Calculating the ROC AUC from predicted probabilities

The AUCs are, in fact, the same. What have we done here? We've confirmed that
all we really need from this fitted scikit-learn model is three numbers: the
intercept and the two coefficients. Once we have these, we could create model
predictions using a few lines of code, with mathematical functions, that are
equivalent to the predictions directly made from scikit-learn.

This is good to confirm your understanding, but otherwise, why would you ever
want to do this? We'll talk about model deployment in the final chapter.
However, depending on your circumstances, you may be in a situation where you
don't have access to Python in the environment where new features will need to
be input into the model for prediction. For example, you may need to make



predictions entirely in SQL. While this is a limitation in general, with logistic
regression you can use mathematical functions that are available in SQL to re-
create the logistic regression prediction, only needing to copy and paste the
intercept and coefficients somewhere in your SQL code. The dot product may not
be available, but you can use multiplication and addition to accomplish the same
purpose.

Now, what about the results themselves? What we've seen here is that we can
slightly boost model performance above our previous efforts: using just
LIMIT_BAL as a feature in the previous chapter's activity, the ROC AUC was a
bit less at 0.62, instead of 0.63 here. In the next chapter, we'll learn advanced
techniques with logistic regression that we can use to further improve
performance.
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4. The Bias-Variance Trade-Off

Activity 4.01: Cross-Validation and Feature Engineering with
the Case Study Data

Solution:

1. Select out the features from the DataFrame of the case study data.

You can use the list of feature names that we've already created in this
chapter, but be sure not to include the response variable, which would be a
very good (but entirely inappropriate) feature:

features = features_response[:-1]

X = df[features].values

2. Make a training/test split using a random seed of 24:

X_train, X_test, y_train, y_test = \

train_test_split(X, df['default payment next
month'].values,

                 test_size=0.2, random_state=24)

We'll use this going forward and reserve this test data as the unseen test set.
By specifying the random seed, we can easily create separate notebooks with
other modeling approaches using the same training data.

3. Instantiate MinMaxScaler to scale the data, as shown in the following
code:

from sklearn.preprocessing import MinMaxScaler

min_max_sc = MinMaxScaler()

4. Instantiate a logistic regression model with the saga solver, L1 penalty, and
set max_iter to 1000, as we'd like to allow the solver enough iterations to
find a good solution:



lr = LogisticRegression(solver='saga',
penalty='l1',

                        max_iter=1000)

5. Import the Pipeline class and create a pipeline with the scaler and the
logistic regression model, using the names 'scaler' and 'model' for
the steps, respectively:

from sklearn.pipeline import Pipeline

scale_lr_pipeline = Pipeline(

    steps=[('scaler', min_max_sc), ('model',
lr)])

6. Use the get_params and set_params methods to see how to view the
parameters from each stage of the pipeline and change them (execute each of
the following lines in a separate cell in your notebook and observe the
output):

scale_lr_pipeline.get_params()

scale_lr_pipeline.get_params()['model__C']

scale_lr_pipeline.set_params(model__C = 2)

7. Create a smaller range of C values to test with cross-validation, as these
models will take longer to train and test with more data than our previous
exercise; we recommend C = [10 , 10, 1, 10 , 10 , 10 ]:

C_val_exponents = np.linspace(2,-3,6)

C_vals = np.float(10)**C_val_exponents

8. Make a new version of the cross_val_C_search function, called
cross_val_C_search_pipe. Instead of the model argument, this
function will take a pipeline argument. The changes inside the function
will be to set the C value using set_params(model__C = <value
you want to test>) on the pipeline, replacing the model with the
pipeline for the fit and predict_proba methods, and accessing the C
value using pipeline.get_params()['model__C'] for the printed
status update.

2 -1 -2 -3



The changes are as follows:

def cross_val_C_search_pipe(k_folds, C_vals,
pipeline, X, Y):

##[…]

pipeline.set_params(model__C =
C_vals[c_val_counter])

##[…]

pipeline.fit(X_cv_train, y_cv_train)

##[…]

y_cv_train_predict_proba =
pipeline.predict_proba(X_cv_train)

##[…]

y_cv_test_predict_proba =
pipeline.predict_proba(X_cv_test)

##[…]

print('Done with C =
{}'.format(pipeline.get_params()\

                                ['model__C']))

Note

For the complete code, refer to https://packt.link/AsQmK.

9. Run this function as in the previous exercise, but using the new range of C
values, the pipeline you created, and the features and response variable from
the training split of the case study data. You may see warnings here, or in
later steps, regarding the non-convergence of the solver; you could
experiment with the tol or max_iter options to try and achieve
convergence, although the results you obtain with max_iter = 1000 are
likely to be sufficient. Here is the code to do this:

https://packt.link/AsQmK


cv_train_roc_auc, cv_test_roc_auc, cv_test_roc =
\

cross_val_C_search_pipe(k_folds, C_vals,
scale_lr_pipeline,

                        X_train, y_train)

You will obtain the following output:

Done with C = 100.0

Done with C = 10.0

Done with C = 1.0

Done with C = 0.1

Done with C = 0.01

Done with C = 0.001

10. Plot the average training and test ROC AUC across folds, for each C value,
using the following code:

plt.plot(C_val_exponents,
np.mean(cv_train_roc_auc, axis=0),

         '-o', label='Average training score')

plt.plot(C_val_exponents,
np.mean(cv_test_roc_auc, axis=0),

         '-x', label='Average testing score')

plt.ylabel('ROC AUC')

plt.xlabel('log$_{10}$(C)')

plt.legend()

plt.title('Cross-validation on Case Study
problem')

You will obtain the following output:



Figure 4.25: Cross-validation test performance

You should notice that regularization does not impart much benefit here, as
may be expected: for lower C values, which correspond to stronger
regularization, model testing (as well as training) performance decreases.
While we are able to increase model performance over our previous efforts
by using all the features available, it appears there is no overfitting going on.
Instead, the training and test scores are about the same. Instead of
overfitting, it's possible that we may be underfitting. Let's try engineering
some interaction features to see if they can improve performance.

11. Create interaction features for the case study data and confirm that the
number of new features makes sense using the following code:

from sklearn.preprocessing import
PolynomialFeatures

make_interactions = PolynomialFeatures(degree=2,

                                       interactio
n_only=True,

                                       include_bi
as=False)



X_interact = make_interactions.fit_transform(X)

X_train, X_test, y_train, y_test =
train_test_split(

    X_interact, df['default payment next
month'].values,

    test_size=0.2, random_state=24)

print(X_train.shape)

print(X_test.shape)

You will obtain the following output:

(21331, 153)

(5333, 153)

From this you should see the new number of features is 153, which is 17 +
"17 choose 2" = 17 + 136 = 153. The "17 choose 2" part comes from
choosing all possible combinations of 2 features to interact from the 17
original features.

12. Repeat the cross-validation procedure and observe the model performance
when using interaction features; that is, repeat steps 9 and 10. Note that this
will take substantially more time, due to the larger number of features, but it
will probably take less than 10 minutes.

You will obtain the following output:



Figure 4.26: Improved cross-validation test performance from adding
interaction features

So, does the average cross-validation test performance improve with the
interaction features? Is regularization useful?

Engineering the interaction features increases the best model test score to about
ROC AUC = 0.74 on average across the folds, from about 0.72 without including
interactions. These scores happen at C = 100, that is, with negligible
regularization. On the plot of training versus test scores for the model with
interactions, you can see that the training score is a bit higher than the test score,
so it could be said that some amount of overfitting is going on. However, we
cannot increase the test score through regularization here, so this may not be a
problematic instance of overfitting. In most cases, whatever strategy yields the
highest test score is the best strategy.

In summary, adding interaction features improved cross-validation performance,
and regularization appears not to be useful for the case study at this point, using a
logistic regression model. We will reserve the step of fitting on all the training
data for later when we've tried other models in cross-validation to find the best
model.
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5. Decision Trees and Random Forests

Activity 5.01: Cross-Validation Grid Search with Random
Forest

Solution:

1. Create a dictionary representing the grid for the max_depth and
n_estimators hyperparameters that will be searched. Include depths of
3, 6, 9, and 12, and 10, 50, 100, and 200 trees. Leave the other
hyperparameters at their defaults. Create the dictionary using this code:

rf_params = {'max_depth':[3, 6, 9, 12],

             'n_estimators':[10, 50, 100, 200]}

Note

There are many other possible hyperparameters to search over. In particular,
the scikit-learn documentation for random forest indicates that "The main
parameters to adjust when using these methods are n_estimators and
max_features" and that "Empirical good default values are …
max_features=sqrt(n_features) for classification tasks."

Source: https://scikit-learn.org/stable/modules/ensemble.html#parameters

For the purposes of this book, we will use max_features='auto'
(which is equal to sqrt(n_features)) and limit our exploration to
max_depth and n_estimators for the sake of a shorter runtime. In a
real-world situation, you should explore other hyperparameters according to
how much computational time you can afford. Remember that in order to
search in especially large parameter spaces, you can use
RandomizedSearchCV to avoid exhaustively calculating metrics for
every combination of hyperparameters in the grid.



2. Instantiate a GridSearchCV object using the same options that we have
previously used in this chapter, but with the dictionary of hyperparameters
created in step 1 here. Set verbose=2 to see the output for each fit
performed. You can reuse the same random forest model object, rf, that we
have been using or create a new one. Create a new random forest object and
instantiate the GridSearchCV class using this code:

rf = RandomForestClassifier(n_estimators=10,\

                            criterion='gini',\

                            max_depth=3,\

                            min_samples_split=2,\

                            min_samples_leaf=1,\

                            min_weight_fraction_l
eaf=0.0,\

                            max_features='auto',\

                            max_leaf_nodes=None,\

                            min_impurity_decrease
=0.0,\

                            min_impurity_split=No
ne,\

                            bootstrap=True,\

                            oob_score=False,\

                            n_jobs=None,

                            random_state=4,\

                            verbose=0,\

                            warm_start=False,\

                            class_weight=None)

cv_rf = GridSearchCV(rf, param_grid=rf_params,\

                     scoring='roc_auc',\



                     n_jobs=-1,\

                     refit=True,\

                     cv=4,\

                     verbose=2,\

                     error_score=np.nan,\

                     return_train_score=True)

3. Fit the GridSearchCV object on the training data. Perform the grid search
using this code:

cv_rf.fit(X_train, y_train)

Because we chose the verbose=2 option, you will see a relatively large
amount of output in the notebook. There will be output for each combination
of hyperparameters and, for each fold, as it is fitted and tested. Here are the
first few lines of output:

Figure 5.22: The verbose output from cross-validation

While it's not necessary to see all this output for shorter cross-validation
procedures, for longer ones, it can be reassuring to see that the cross-
validation is working and to give you an idea of how long the fits are taking
for various combinations of hyperparameters. If things are taking too long,
you may want to interrupt the kernel by pushing the stop button (square) at
the top of the notebook and choosing hyperparameters that will take less
time to run, or use a more limited set of hyperparameters.



When this is all done, you should see the following output:

Figure 5.23: The cross-validation output upon completion

This cross-validation job took about 2 minutes to run. As your jobs grow,
you may wish to explore parallel processing with the n_jobs parameter to
see whether it's possible to speed up the search. Using n_jobs=-1 for
parallel processing, you should be able to achieve shorter runtimes than with
serial processing. However, with parallel processing, you won't be able to
see the output of each individual model fitting operation, as shown in Figure
5.23.

4. Put the results of the grid search in a pandas DataFrame. Use this code to put
the results in a DataFrame:

cv_rf_results_df =
pd.DataFrame(cv_rf.cv_results_)

5. Create a pcolormesh visualization of the mean testing score for each
combination of hyperparameters. Here is the code to create a mesh graph of
cross-validation results. It's similar to the example graph that we created
previously, but with annotation that is specific to the cross-validation we
performed here:

ax_rf = plt.axes()

pcolor_graph = ax_rf.pcolormesh\

               (xx_rf, yy_rf,\

                cv_rf_results_df['mean_test_score
']\



                .values.reshape((4,4)),
cmap=cm_rf)

plt.colorbar(pcolor_graph, label='Average testing
ROC AUC')

ax_rf.set_aspect('equal')

ax_rf.set_xticks([0.5, 1.5, 2.5, 3.5])

ax_rf.set_yticks([0.5, 1.5, 2.5, 3.5])

ax_rf.set_xticklabels\

([str(tick_label) for tick_label in
rf_params['n_estimators']])

ax_rf.set_yticklabels\

([str(tick_label) for tick_label in
rf_params['max_depth']])

ax_rf.set_xlabel('Number of trees')

ax_rf.set_ylabel('Maximum depth')

The main change from our previous example is that instead of plotting the
integers from 1 to 16, we're plotting the mean testing scores that we've
retrieved and reshaped with
cv_rf_results_df['mean_test_score'].values.reshape(
(4,4)). The other new things here are that we are using list
comprehensions to create lists of strings for tick labels, based on the
numerical values of hyperparameters in the grid. We access them from the
dictionary that we defined, and then convert them individually to the str
(string) data type within the list comprehension, for example,
ax_rf.set_xticklabels([str(tick_label) for
tick_label in rf_params['n_estimators']]). We have
already set the tick locations to the places where we want the ticks using
set_xticks. Also, we make a square-shaped graph using
ax_rf.set_aspect('equal'). The graph should appear as follows:



Figure 5.24: Results of cross-validation of a random forest over a grid
with two hyperparameters

6. Conclude which set of hyperparameters to use.

What can we conclude from our grid search? There certainly seems to be an
advantage to using trees with a depth of more than 3. Of the parameter
combinations that we tried, max_depth=9 with 200 trees yields the best
average testing score, which you can look up in the DataFrame and confirm
is ROC AUC = 0.776.

This is the best model we've found from all of our efforts so far.

In a real-world scenario, we'd likely do a more thorough search. Some good
next steps would be to try a larger number of trees and not spend any more
time with n_estimators < 200, since we know that we need at least 200
trees to get the best performance. You may search a more granular space of
max_depth instead of jumping by 3s, as we've done here, and try a couple
of other hyperparameters, such as max_features. For our purposes,
however, we will assume that we've found the optimal hyperparameters here
and move forward..
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6. Gradient Boosting, XGBoost, and SHAP Values

Activity 6.01: Modeling the Case Study Data
with XGBoost and Explaining the Model with SHAP 

Solution:

In this activity, we'll take what we've learned in this chapter with a synthetic
dataset and apply it to the case study data. We'll see how an XGBoost model
performs on a validation set and explain the model predictions using SHAP
values. We have prepared the dataset for this activity by replacing the samples
that had missing values for the PAY_1 feature, that we had previously ignored,
while maintaining the same train/test split for the samples with no missing values.
You can see how the data was prepared in the Appendix to the notebook for this
activity.

1. Load the case study data that has been prepared for this exercise. The file
path is ../../Data/Activity_6_01_data.pkl and the variables
are: features_response, X_train_all, y_train_all,
X_test_all, y_test_all:

with open('../../Data/Activity_6_01_data.pkl',
'rb') as f:

    features_response, X_train_all, y_train_all,
X_test_all,\

    y_test_all = pickle.load(f)

2. Define a validation set to train XGBoost with early stopping:

from sklearn.model_selection import
train_test_split

X_train_2, X_val_2, y_train_2, y_val_2 = \

train_test_split(X_train_all, y_train_all,\

                 test_size=0.2, random_state=24)



3. Instantiate an XGBoost model. We'll use the lossguide grow policy and
examine validation set performance for several values of max_leaves:

xgb_model_4 = xgb.XGBClassifier(

    n_estimators=1000,

    max_depth=0,

    learning_rate=0.1,

    verbosity=1,

    objective='binary:logistic',

    use_label_encoder=False,

    n_jobs=-1,

    tree_method='hist',

    grow_policy='lossguide')

4. Search values of max_leaves from 5 to 200, counting by 5's:

max_leaves_values = list(range(5,205,5))

5. Create the evaluation set for early stopping:

eval_set_2 = [(X_train_2, y_train_2), (X_val_2,
y_val_2)]

6. Loop through hyperparameter values and create a list of validation ROC
AUCs, using the same technique as in Exercise 6.01: Randomized Grid
Search for Tuning XGBoost Hyperparameters:

%%time

val_aucs = []

for max_leaves in max_leaves_values:

    #Set parameter and fit model

    xgb_model_4.set_params(**
{'max_leaves':max_leaves})



    xgb_model_4.fit(X_train_2, y_train_2,\

                    eval_set=eval_set_2,\

                    eval_metric='auc',\

                    verbose=False,\

                    early_stopping_rounds=30)

    #Get validation score

    val_set_pred_proba =
xgb_model_4.predict_proba(X_val_2)[:,1]

    val_aucs.append(roc_auc_score(y_val_2,
val_set_pred_proba))

7. Create a data frame of the hyperparameter search results and plot the
validation AUC against max_leaves:

max_leaves_df_2 = \

pd.DataFrame({'Max leaves':max_leaves_values,\

              'Validation AUC':val_aucs})

mpl.rcParams['figure.dpi'] = 400

max_leaves_df_2.set_index('Max leaves').plot()

The plot should look something like this:



Figure 6.15: Validation AUC versus max_leaves for the case study
data

Although the relationship is somewhat noisy, we see that in general, lower
values of max_leaves result in a higher validation set ROC AUC. This is
because limiting the complexity of trees by allowing fewer leaves results in
less overfitting, and increases the validation set score.

8. Observe the number of max_leaves corresponding to the highest ROC
AUC on the validation set:

max_auc_2 = max_leaves_df_2['Validation
AUC'].max()

max_auc_2

max_ix_2 = max_leaves_df_2['Validation AUC'] ==
max_auc_2

max_leaves_df_2[max_ix_2]

The result should be as follows:



Figure 6.16: Optimal max_leaves and validation set AUC for the case
study data

We would like to interpret these results in light of our previous efforts in
modeling the case study data. This is not a perfect comparison, because here
we have missing values in the training and validation data, while previously
we ignored them, and here we only have one validation set, as opposed to
the k-folds cross-validation used earlier (although the interested reader could
try using k-folds cross-validation for multiple training/validation splits in
XGBoost with early stopping).

However, even given these limitations, the validation results here should
provide a measure of out-of-sample performance similar to the k-folds cross-
validation we performed earlier. We note that the validation ROC AUC here
of 0.779 here is a bit higher than the 0.776 obtained previously with random
forest in Activity 5.01, Cross-Validation Grid Search with Random Forest,
from Chapter 5, Decision Trees and Random Forests. These validation
scores are fairly similar and it would probably be fine to use either model in
practice. We'll now move forward with the XGBoost model.

9. Refit the XGBoost model with the optimal hyperparameter:

xgb_model_4.set_params(**{'max_leaves':40})

xgb_model_4.fit(X_train_2, y_train_2,
eval_set=eval_set_2,

                eval_metric='auc',

                verbose=False,
early_stopping_rounds=30)

10. So that we can examine SHAP values for the validation set, make a data
frame of this data:

X_val_2_df = pd.DataFrame(data=X_val_2,



                          columns=features_respon
se[:-1])

11. Create an SHAP explainer for our new model using the validation data as the
background dataset, obtain the SHAP values, and make a summary plot:

explainer_2 = shap.explainers.Tree(xgb_model_4,
data=X_val_2_df)

shap_values_2 = explainer_2(X_val_2_df)

mpl.rcParams['figure.dpi'] = 75

shap.summary_plot(shap_values_2.values,
X_val_2_df)

The plot should look like this:



Figure 6.17: SHAP values for the XGBoost model of the case study data
on the validation set

From Figure 6.17, we can see that the most important features in the
XGBoost model are somewhat different from those in the random forest
model we explored in Chapter 5, Decision Trees and Random Forests
(Figure 5.15). No longer is PAY_1 the most important feature, although it is
still quite important at number 3. LIMIT_BAL, the borrower's credit limit, is
now the most important feature. This makes sense as an important feature as
the lender has likely based the credit limit on how risky a borrower is, so it
should be a good predictor of the risk of default.

Let's explore whether LIMIT_BAL has any interesting SHAP interactions
with other features. Instead of specifying which feature to color the scatter



plot by, we can let the shap package pick the feature that has the most
interaction by not indexing the explainer object for the color argument.

12. Make a scatter plot of LIMIT_BAL SHAP values, colored by the feature
with the strongest interaction:

shap.plots.scatter(shap_values_2[:,'LIMIT_BAL'],

                   color=shap_values_2)

The plot should look like this:

Figure 6.18: Scatter plot of SHAP values of LIMIT_BAL and the feature
with the strongest interaction

BILL_AMT2, the amount of the bill from two months previous, has the
strongest interaction with LIMIT_BAL. We can see that for most values of
LIMIT_BAL, if the bill was particularly high, this leads to more positive
SHAP values, meaning an increased risk of default. This can be observed by
noting that most of the reddest colored dots appear along the top of the band
of dots in Figure 6.18. This makes intuitive sense: even if a borrower was
given a large credit limit, if their bill becomes very large, this may signal an
increased risk of default.



Finally, we will save the model along with the training and test data for
analysis and delivery to our business partner. We accomplish this using
Python's pickle functionality.

13. Save the trained model along with the training and test data to a file:

with open('../Data/xgb_model_w_data.pkl', 'wb')
as f:

    pickle.dump([X_train_all, y_train_all,\

                 X_test_all, y_test_all,\

                 xgb_model_4], f)
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7. Test Set Analysis, Financial Insights, and Delivery to the Client

Activity 7.01: Deriving Financial Insights

Solution:

1. Using the testing set, calculate the cost of all defaults if there were no
counseling program.

Use this code for the calculation:

cost_of_defaults = np.sum(y_test_all *
X_test_all[:,5])

cost_of_defaults

The output should be this:

60587763.0

2. Calculate by what percent the cost of defaults can be decreased by the
counseling program.

The potential decrease in the cost of default is the greatest possible net
savings of the counseling program, divided by the cost of all defaults in the
absence of a program:

net_savings[max_savings_ix]/cost_of_defaults

The output should be this:

0.2214260658542551

Results indicate that we can decrease the cost of defaults by 22% using a
counseling program, guided by predictive modeling.

3. Calculate the net savings per account (considering all accounts it might be
possible to counsel, in other words relative to the whole test set) at the
optimal threshold.



Use this code for the calculation:

net_savings[max_savings_ix]/len(y_test_all)

The output should be as follows:

2259.2977433479286

Results like these help the client scale the potential amount of savings they
could create with the counseling program, to as many accounts as they serve.

4. Plot the net savings per account against the cost of counseling per account
for each threshold.

Create the plot with this code:

plt.plot(total_cost/len(y_test_all),

         net_savings/len(y_test_all))

plt.xlabel\

('Upfront investment: cost of counselings per
account (NT$)')

plt.ylabel('Net savings per account (NT$)')

The resulting plot should appear like this:



Figure 7.14: The initial cost of the counseling program needed to
achieve a given amount of savings

This indicates how much money the client needs to budget to the counseling
program in a given month, to achieve a given amount of savings. It looks
like the greatest benefit can be created by budgeting up to about NT$1300
per account (you could find the exact budgeted amount corresponding to
maximum net savings using np.argmax). However, net savings are
relatively flat for upfront investments between NT$1000 and 2000, being
lower outside that range. The client may not actually be able to budget this
much for the program. However, this graphic gives them evidence to argue
for a larger budget if they need to.

This result corresponds to our graphic from the previous exercise. Although
we've shown the optimal threshold is 0.36, it may be fine for the client to use
a higher threshold up to about 0.5, thus making fewer positive predictions,
offering counseling to fewer account holders, and having a smaller upfront
program cost. Figure 7.14 shows how this plays out in terms of cost and net
savings per account.

5. Plot the fraction of accounts predicted as positive (this is called the "flag
rate") at each threshold.



Use this code to plot the flag rate against the threshold:

plt.plot(thresholds, n_pos_pred/len(y_test_all))

plt.ylabel('Flag rate')

plt.xlabel('Threshold')

The plot should appear as follows:

Figure 7.15: Flag rate against threshold for the credit counseling
program

This plot shows the fraction of people who will be predicted to default and
therefore will be recommended outreach at each threshold. It appears that at
the optimal threshold of 0.36, only about 20% of accounts will be flagged
for counseling. This shows how using a model to prioritize accounts for
counseling can help focus on the right accounts and reduce wasted resources.
Higher thresholds, which may result in nearly optimal savings up to a
threshold of about 0.5 as shown in Figure 7.12 (Chapter 7, Test Set Analysis,
Financial Insights, and Delivery to the Client) result in lower flag rates.

6. Plot a precision-recall curve for the testing data using the following code:



plt.plot(n_true_pos/sum(y_test_all),\

         np.divide(n_true_pos, n_pos_pred))

plt.xlabel('Recall')

plt.ylabel('Precision')

The plot should look like this:

Figure 7.16: Precision-recall curve

Figure 7.16 shows that in order to start getting a true positive rate (that is,
recall) much above 0, we need to accept a precision of about 0.8 or lower.

Precision and recall have a direct link to the cost and savings of the program:
the more precise our predictions are, the less money we are wasting on
counseling due to incorrect model predictions. And, the higher the recall, the
more savings we can create by successfully identifying accounts that would
default. Compare the code in this step to the code used to calculate costs and
savings in the previous exercise to see this.



To see the connection of precision and recall with the threshold used to
define positive and negative predictions, it can be instructive to plot them
separately.

7. Plot precision and recall separately on the y-axis against threshold on the x-
axis.

Use this code to produce the plot:

plt.plot(thresholds, np.divide(n_true_pos,
n_pos_pred),

         label='Precision')

plt.plot(thresholds, n_true_pos/sum(y_test_all),

         label='Recall')

plt.xlabel('Threshold')

plt.legend()

The plot should appear as follows:

Figure 7.17: Precision and recall plotted separately against the threshold



This plot sheds some light on why the optimal threshold turned out to be 0.36.
While the optimal threshold also depends on the financial analysis of costs and
savings, we can see here that the steepest part of the initial increase in precision,
which represents the correctness of positive predictions and is therefore a
measure of how cost-effective the model-guided counseling can be, happens up to
a threshold of about 0.36.
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Hey!

I am Stephen Klosterman, the author of this book. I really hope you enjoyed
reading my book and found it useful.

It would really help me (and other potential readers!) if you could leave a
review on Amazon sharing your thoughts on Data Science Projects with
Python, Second Edition.

Go to the link https://packt.link/r/1800564481.

OR

Scan the QR code to leave your review.

Your review will help me to understand what's worked well in this book and
what could be improved upon for future editions, so it really is appreciated.

Best wishes,

Stephen Klosterman
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